Designing Simple Tridentate Ligands for Highly Luminescent Europium Complexes

Nail M. Shavaleev,^[a] Svetlana V. Eliseeva,^[a] Rosario Scopelliti,^[a] and Jean-Claude G. Bünzli*^[a, b]

Abstract: A series of tridentate benzimidazole-substituted pyridine-2-carboxylic acids have been prepared with a halogen, methyl or alkoxy group in the 6-position of the benzimidazole ring, which additionally contains a solubilising N-alkyl chain. The ligands form neutral homoleptic nine-coordinate lanthanum, europium and terbium complexes as established from X-ray crystallographic analysis of eight structures. The coordination polyhedron around the lanthanide ion is close to a tricapped trigonal prism with ligands arranged in an up-up-down fashion. The coordinated ligands serve as lightharvesting chromophores in the complexes with absorption maxima in the range 321–341 nm ($\varepsilon = (4.9-6.0) \times 10^4 \,\mathrm{M^{-1} \, cm^{-1}}$) and triplet-state energies between 21300 and 18800 cm⁻¹; the largest redshifts occur for bromine and electron-donor alkoxy substituents. The ligands efficiently sensitise europium luminescence with overall quantum yields ($Q_{\rm L}^{\rm Eu}$) and observed lifetimes ($\tau_{\rm obs}$) reaching 71% and 3.00 ms, respectively, in the solid state and 52%

Keywords: benzimidazole • europium • luminescence • radiative lifetime • sensitization efficiency • tridentate ligands and 2.81 ms, respectively, in CH_2Cl_2 at room temperature. The radiative lifetimes of the $Eu({}^{5}D_{0})$ level amount to $\tau_{\rm rad} = 3.6 - 4.6 \, \text{ms}$ and the sensitisation efficiency $\eta_{\text{sens}} = Q_{\text{L}}^{\text{Eu}}(\tau_{\text{rad}}/\tau_{\text{obs}})$ is close to unity for most of the complexes in the solid state and equal to approximately 80% in solution. The photophysical parameters of the complexes correlate with the triplet energy of the ligands, which in turn is determined by the nature of the benzimidazole substituent. Facile modification of the ligands makes them promising for the development of brightly emissive europiumcontaining materials.

Introduction

Trivalent europium is one of the most intriguing and resourceful lanthanide luminescent ions. Its red emission line

[a] Dr. N. M. Shavaleev, Dr. S. V. Eliseeva, Dr. R. Scopelliti, Prof. Dr. J.-C. G. Bünzli Laboratory of Lanthanide Supramolecular Chemistry École Polytechnique Fédérale de Lausanne (EPFL) LCSL-BCH 1402, 1015 Lausanne (Switzerland) Fax: (+41)21-693-9825 E-mail: jean-claude.bunzli@epfl.ch

 [b] Prof. Dr. J.-C. G. Bünzli
 WCU professor
 Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials
 Korea University, 208 Seochang, Jochiwon
 ChungNam 339-700 (South Korea)

Supporting information for this article, which includes synthesis of the ligand precursors and La and Tb complexes; ¹H NMR spectra, absorption and luminescence spectra; and CIF files of the crystal structures, is available on the WWW under http://dx.doi.org/10.1002/ chem.200901996. at 610 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition) was first detected by Sir William Crookes in the spectrum of Sm^{III} in 1885 and confirmed by Lecoq de Boisbaudran in 1892; the entire phosphorescence spectrum from both the ${}^{5}D_{0}$ and ${}^{5}D_{1}$ levels was subsequently recorded and assigned in 1900 by Demarçais, who a short while later positively identified the new element.^[1] Some specific emission features of Eu^{III} are responsible for its wide use in photonic applications, namely: 1) the energy gap between the most emissive ${}^{5}D_{0}$ level and the highest sub-level of the ground state, ⁷F₆, is large enough $(\approx 12000 \text{ cm}^{-1})$ to minimise non-radiative de-activations, except when high-energy phonons (i.e., OH or NH) are operative in the inner coordination sphere; in this case, however, the luminescence quenching may be turned into an advantage for the determination of the hydration number;^[2,3] 2) the lifetime of the ${}^{5}D_{0}$ level is in the millisecond range and may even reach values up to 14 ms^[4,5] in inorganic compounds, thus allowing time-resolved detection with simple instrumentation, a definite advantage for analytical applications; 3) depending on the inorganic matrix or organic complex the Eu^{III} ion is embedded into, the emission may be extremely monochromatic; in β -diketonates, for instance, the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition accounts for up to approximately 80% of the total emission intensity; in addition, the colour is tunable: when Eu^{III} lies on an inversion centre, the magnetic dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition (≈ 590 nm) is favoured over the electric dipole transitions, thereby shifting the emitted colour to orange; 4) the ${}^{5}D_{0}$ level is un-split by ligand-field effects, thus leading to easy interpretation of the ${}^{7}F_{J}$ ligand-field sub-levels of the ground term in terms of site symmetry; this makes Eu^{III} an ideal structural probe.^[6,7]

As a consequence, practical applications for europium luminescence have proliferated since the first phosphor with bright red emission, Y_2O_3 :Eu (quantum yield = 90 %),^[8] was discovered by Urbain at the beginning of the twentieth century.^[9] Following this initial success, a wealth of other Eu-activated luminescent materials and molecular compounds have been prepared.^[10,11] Electroluminescent devices,^[12] security inks,^[13] plastic films for agriculture,^[14] analytical and sensing probes,^[15] as well as bioprobes for immunoassays^[16] or for imaging live cells,^[17] all benefit from europium luminescence and are the subject of very active research.

One of the key features in the design of highly luminescent Eu-containing compounds is the fact that dipole strengths of the f-f transitions are very faint,^[18] which requires a sensitisation process in which energy absorbed by the Eu^{III} surroundings is transferred onto the excited states of the ion. The entire process is intricate since several mechanisms and numerous ligand and metal-ion states are involved.^[19] The overall efficiency of a luminescent material is given by $\varepsilon(\lambda)Q(\lambda)$, in which $\varepsilon(\lambda)$ is the molar absorption coefficient at the wavelength used for the determination of the quantum yield Q. Optimising the design of such a compound requires a large $\varepsilon(\lambda)$ value, as well as Q as close to unity as possible. In fact, Q, or more precisely $Q_{\rm L}^{\rm Eu}$, the quantum yield obtained upon ligand excitation, depends on two essential parameters. The first is the efficiency with which the ligands transfer energy onto the europium ion, $\eta_{\rm sens}$, and the second is the intrinsic quantum yield, $Q_{\rm Fu}^{\rm Eu}$, namely, the quantum yield upon direct excitation into the f level [Eq. (1)]:

$$Q_{\rm L}^{\rm Eu} = \eta_{\rm sens} Q_{\rm Eu}^{\rm Eu} = \eta_{\rm sens} (\tau_{\rm obs} / \tau_{\rm rad}) \tag{1}$$

In turn, the intrinsic quantum yield is governed by two factors: 1) non-radiative de-activations, which can be minimised by designing a rigid Eu^{III} environment devoid of highenergy vibrations, thus leading to a longer observed lifetime, τ_{obs} and 2) the value of the radiative lifetime, τ_{rad} . The smaller the latter, the more easily radiative de-activation can compete with non-radiative ones, as we have shown recently for a series of luminescent Yb^{III} complexes.^[20] Decreasing τ_{rad} implies mixing ligand states in the 4f orbitals to render f–f transitions less forbidden but, in turn, this may lead to enhanced non-radiative de-activation and no clear strategy has been proposed yet for controlling this parameter. Another feature of Eu^{III} relevant to the design of luminescent compounds is its ability to form relatively low-lying ligandto-metal charge-transfer (LMCT) states; when the energy of this state is too low (typically $< 25\,000 \text{ cm}^{-1}$), efficient quenching of the metal-centred luminescence occurs,^[21] whereas when it is higher, energy can be pumped from the ligand to the metal ion through such a state.^[22]

With respect to molecular complexes, several classes of organic ligands have been tested for generating highly luminescent europium compounds, the most studied ones being β -diketonates,^[23–28] with $Q_{\rm L}^{\rm Eu}$ reaching 85% for [Eu(thenoyltrifluoroacetylacetonate)₃(dibenzylsulfoxide)₂].^[19] However, bidentate β-diketonates cannot provide neutral homoleptic lanthanide complexes with a saturated coordination sphere and, in addition, they are sensitive to photobleaching under UV irradiation.^[24] Therefore the search for other types of ligands is actively ongoing;^[29] for instance, $Q_{\rm L}^{\rm Eu}$ values of 60 and 70% have been recently reported for [Eu{4-(phenyl)-6-(2'-pyridyl)pyridine-2-carboxylate $_{3}$ ^[30] and for [Eu-(NO₃)₃(2,2'-bipyrimidine)₂], respectively.^[31] In a preliminary communication,^[32] we have described a strategy based on benzimidazole-substituted pyridine-2-carboxylic acids^[33] for obtaining homoleptic neutral europium chelates. The wrapping of three of these tridentate ligands around the Eu^{III} ion provides a saturated N₆O₃ nine-coordinate environment;^[34] the benzimidazole-pyridine chromophore acts as efficient antenna for sensitising Eu^{III} luminescence,^[35] thereby leading to quantum yields as large as 61% for EuL1 (Scheme 1).^[32] In this paper, we expand this initial work by synthesising a series of ligands fitted with various substituents at the benzimidazole ring. The resulting tris complexes are structurally characterised and their photophysical properties reveal highly luminescent molecular europium compounds with large molar absorption coefficients and quantum yields and long excited-state lifetimes.

Ln: La, Eu, Tb

Scheme 1. Synthesis of benzimidazole-substituted pyridine-2-carboxylic acids and their lanthanide complexes. Reaction conditions: a) Na₂S₂O₄, 2-methoxyethanol/H₂O, under N₂, 110°C; b) SeO₂, dioxane, under N₂, 110°C; c) H₂O₂, formic acid, under air, 0°C; d) LnCl₃-*n* H₂O, NaOH, ethanol/H₂O, under air, heating.

www.chemeurj.org

Results and Discussion

Synthetic aspects: The ligands have been synthesised in three steps from 2-carboxaldehyde-6-hydroxymethylpyridine and substituted *o*-nitroanilines (Scheme 1). An efficient synthesis of the former intermediate has been recently described by our group,^[36] whereas the latter are available by means of a facile reaction of primary alkylamines with 2-halonitrobenzenes in dimethylsulfoxide (DMSO; Scheme 2). In

Scheme 2. Synthesis of precursors. Reaction conditions: a) 1-octylbromide, K_2CO_3 , dry DMF, under N_2 , 80°C; b) *n*-octylamine (excess, used as a reagent and as a base), dry DMSO, under N_2 , heating.

the first step, the benzimidazole ring was formed by reacting 2-carboxaldehyde-6-hydroxymethylpyridine with o-nitroaniline in the presence of Na₂S₂O₄ in 2-methoxyethanol/H₂O.^[37] In the second step, a hydroxymethylpyridine was oxidised to a carboxaldehyde with SeO₂ in dioxane. Finally, the aldehyde was oxidised with H2O2/formic acid to yield a carboxylic acid.^[38] The advantages of this synthetic approach are 1) the easy availability of the starting materials, 2) the efficient formation of the benzimidazole ring under mild conditions, and 3) the selective step-wise oxidation that does not result in degradation of the alkyl groups or in N-oxide formation. At least two convenient attachment points are available for subsequent grafting of the ligands with functional groups (e.g., chromophore or charge transport), namely, the amine nitrogen on benzimidazole ring and a hydroxyl group of 3-fluoro-4-nitrophenol, which is a precursor to HL401 and HL808 (Scheme 2). In addition, a bromine group in ligand HL8Br and its precursors offers opportunities for carbon-carbon or carbon-heteroatom coupling.

To test the influence of the substituents on both the formation of the complexes and their photophysical properties, ligands have been prepared that bear electron-acceptor (F, Cl), or electron-donor groups (CH₃, OCH₃, OC₈H₁₇), or a 'heavy' atom (Br) at the 6-position of the benzimidazole ring (Scheme 1). Introducing a substituent in this position prevents its steric interference with metal binding while still allowing it to influence the electron density of the coordinating benzimidazole N atom, as a result of the two groups being in *para* configuration. Additionally, variation of the length of the *N*-alkyl chain allows one to control the solubility of both ligands and complexes.

Complexes with composition $[Ln(\kappa^3-ligand)_3]\cdot nH_2O$ (n=0-2; Ln=La, Eu, Tb; abbreviated as LnLigand) have been isolated as air- and moisture-stable white solids by reacting the ligand, sodium hydroxide, and lanthanide chloride in 3:3:1 ratio in hot aqueous ethanol (Scheme 1). The complexes containing *N*-methyl or *N*-butyl benzimidazoles are only soluble in DMSO; the ones with longer *N*-octyl chains are also soluble in non-coordinating CH₂Cl₂. They have been characterised by elemental analysis (C, H, N), X-ray crystallography, electronic absorption and luminescence spectroscopy. Syntheses of ligands **HL1**, **HL4Me**, their La and Eu complexes, and discussion of their spectroscopic properties have been reported in a preliminary communication.^[32]

Structural characterisation of the complexes: Single crystals suitable for X-ray analysis could be obtained for $[Ln(L1)_3]$, $[Ln(L4Me)_3]$ (Ln=La, Eu, Tb) and $[Ln(L4O1)_3]$ (Ln=La, Eu); their molecular structures are shown in Figure 1 and selected parameters are collected in Table 1.

All of the complexes share similar structural properties. The lanthanide ion is 9-coordinated by three ligands and its coordination polyhedron can be described as a distorted tricapped trigonal prism (TCTP, Figure 2),^[39] with N(py) (py = pyridine) atoms in capping positions and forming a plane with Ln. Two triangular faces of the prism are defined by O-N(b)-N(b) and O-O-N(b) atoms (b=benzimidazole). Each of the three ligands spans both triangular faces of the TCTP through a capping position. However, the complex lacks C_3 symmetry as the ligands are arranged in an up–up–down fashion around the metal. The crystal structures of [Ln-(L4Me)₃] (Ln=La, Tb) contain two independent molecules with slightly different metal–ligand bond lengths.

The coordinated ligands are generally not planar with dihedral angles between pyridine and benzimidazole in the range of 2–40°. They are not equally strongly bonded to the metal ion, as reflected in the different respective sets of bond lengths that decrease in the order La > Eu \approx Tb as a result of lanthanide contraction. The metal ion is preferentially bound to the pyridine-2-carboxylate, whereas bonding to the benzimidazole is relatively weak, which is reflected in longer bond lengths, Ln–O < Ln–N(py) < Ln–N(b), and in their wider variation. Within a complex, the distribution of bond lengths is surprisingly uniform for pyridine compared to carboxylate with Δ =0.004–0.060 Å for Ln–N(py), 0.018–0.127 Å for Ln–O and 0.072–0.283 Å for Ln–N(b) (Table 1).

In all **LnL1** structures, two of the ligands are likely to be involved in an intra-complex stacking interaction, as their imidazole rings are nearly parallel and partially overlap with distances of approximately 3.5 Å (Figure 1A–C). The cocrystallised water molecule in **LnL401** forms a hydrogen bond with the carbonyl oxygen of a carboxylate group with $O\cdots O(water) = 2.781(5)$ Å for La and 2.791(10) for Eu; however, the Ln $\cdots O(water)$ distances are >7.1 Å and preclude interaction between them. The structure of **TbL4Me** con-

Figure 1. Molecular structures of the lanthanide complexes (50% probability ellipsoids; H atoms, *N*-butyl groups and co-crystallised solvent molecules omitted). Heteroatoms: O, red; N, blue; Ln, black. A–C) **LnL1** (Ln=La, Eu, Tb). D–F) **LnL4Me** (Ln=La, Eu, Tb). G, H) **LnL4O1** (Ln=La, Eu). Only one of the two independent molecules is shown for **LaL4Me** and **TbL4Me**.

tains four co-crystallised water molecules that form three hydrogen bonds with two independent molecules of the complex. The interaction with the first complex consists of a bond to a carbonyl group with $O\cdots O(water) = 2.865$ Å and $Tb1\cdots O(water) = 7.169$ Å. For the other complex there are bonds to 1) the hydroxy group of one ligand with $O\cdots O(water) = 2.774$ Å and a short $Tb2\cdots O(water)$ distance of 4.643 Å, which may allow interaction between Tb^{III} and water; and 2) a carbonyl of another ligand with $O\cdots O(water) = 2.778$ Å and $Tb2\cdots O(water) = 6.986$ Å. Finally, the inter-metal distances in the structures are >9.3 Å, which is likely to prevent intermetallic interaction, an a priori favourable situation for luminescent properties.

The relative bonding strengths of the ligands have been quantified with the bond-valence $method^{[40]}$ wherein a

and exclusion of the longest La–N(b) bond results in BVS = 2.94. For the smaller Tb ion, a consistently lower BVS is calculated (2.85–2.93), which may indicate steric crowding of the ligands resulting in weaker, thus longer bonds. The average contributions from the various coordinating groups are nearly constant and are in the expected series, v(O), 0.42(4) > v(N(py)), 0.31(2) > v(N(b)), 0.27(6), and very similar to the parameters obtained for a series of Yb–Na binuclear complexes with benzoxazole-substituted 8-hydroxyquinolines.^[20]

Ligand-centred electronic states: UV/Vis absorption spectra of the ligands have been recorded in DMSO, whereas for the complexes, the chosen solvent was non-coordinating CH_2Cl_2 (the ligands themselves are insoluble in CH_2Cl_2).

www.chemeurj.org

-10793

FULL PAPER

donor atom *j* lying at a distance $d_{\text{Ln},j}$ from the metal ion is characterised by a bond-valence contribution $v_{\text{Ln},j}$ [Eq. (2)]:

$$v_{\mathrm{Ln},j} = e^{(R_{\mathrm{Ln},j} - d_{\mathrm{Ln},j})/b} \tag{2}$$

in which $R_{\text{Ln},j}$ are the bond-valence parameters for the pair of interacting atoms (Ln–O^[41] or Ln–N^[42]), and *b* is a constant equal to 0.37 Å. The bond-valence sum (BVS) of the metal ion V_{Ln} defined by Equation (3) is supposed to match its formal oxidation state if average bond lengths are standard:

$$V_{\rm Ln} = \sum_{j} v_{{\rm Ln},j} \tag{3}$$

As Table 2 shows, the BVS values for the new structures are in the range of 2.85-3.13 and match well the expected value for Ln^{III} (3.00) within the variability of the method, accepted to be ± 0.25 valence units, and therefore confirm the good quality of the crystallographic data. For the majority of La and Eu structures, BVS=3.01-3.05. The only exception is one of the two independent molecules in LaL4Me, which has a slightly larger than expected BVS of 3.13; the lanthanum ion in this complex appears to be on the borderline between 9- and 8-coordination A EUROPEAN JOURNAL

Table 1.	Selected	structural	parameters	of	the	complexes.[[a]
----------	----------	------------	------------	----	-----	-------------	-----

]	Bond lengths [A] ^µ	p]	Angle [°] ^[c]	Ln–Ln
	Ln–O	Ln-N(py)	Ln–N(b)	py-b	[Å] ^[d]
$[La(L1)_{2}]$	2,423(4)	2.707(5)	2.723(5)	2.41	9.391
[===(==)3]	2.459(4)	2.709(5)	2.796(5)	26.64	
	2.470(4)	2.685(5)	2.785(5)	40.28	
	2.451(20)	2.700(11)	2.768(32)	23(16)	
	0.047	0.024	0.073	38	
$[Eu(L1)_2]$	2.339(2)	2.594(3)	2.632(3)	4.10	9.314
[==(==)3]	2.355(3)	2.585(3)	2.701(3)	26.60	
	2.357(2)	2.555(3)	2.704(3)	38.73	
	2.350(8)	2.578(17)	2.679(33)	23(14)	
	0.018	0.039	0.072	35	
[Tb(L1) ₂]	2.327(3)	2.546(3)	2.579(3)	12.32	9.534
1 751	2.328(3)	2.562(3)	2.673(3)	29.27	
	2.377(3)	2.564(3)	2.682(4)	33.29 ^[e]	
				26.46 ^[e]	
	2.344(23)	2.557(8)	2.645(47)	25 (8)	
	0.05	0.018	0.103	21	
$[La(L4Me)_{2}] (1)^{[f]}$	2.429(11)	2.651(12)	2.750(12)	20.03	10.128
[]	2.449(11)	2.698(12)	2.588(13)	6.48	
	2,499(13)	2.699(12)	2.871(12)	34.35	
	2.459(29)	2.683(22)	2.736(116)	20 (11)	
	0.07	0.048	0.283	28	
$[La(L4Me)_{2}] (2)^{[f]}$	2.429(11)	2.695(13)	2.741(13)	8.28	
[]	2.430(10)	2.699(12)	2.631(12)	20.65	
	2.556(11)	2.698(12)	2.839(12)	36.77	
	2.472(60)	2.697(2)	2.737(85)	22 (12)	
	0.127	0.004	0.208	28	
$[Eu(L4Me)_2]$	2.342(2)	2.588(3)	2.564(3)	4.28	9.633
	2.365(2)	2.588(3)	2.613(3)	8.33	
	2.393(2)	2.604(3)	2,735(3)	31.86	
	2.367(21)	2.593(8)	2.637(72)	15 (12)	
	0.051	0.016	0.171	28	
[Tb(L4Me) ₂] (1) ^[f]	2.336(3)	2.576(3)	2.601(4)	19.69	10.094
	2.337(3)	2.551(4)	2.560(3)	6.29	
	2.363(3)	2.575(4)	2.772(4)	31.29	
	2.345(12)	2.567(12)	2.644(92)	19 (10)	
	0.027	0.025	0.212	25	
$[Tb(I_4Me)_2] (2)^{[f]}$	2,332(3)	2.564(4)	2.572(3)	9.73	
[10(24,040)3] (2)	2.337(3)	2.551(3)	2.575(4)	19.70	
	2.430(3)	2.596(4)	2.776(3)	36.70	
	2.366(45)	2.570(19)	2.641(95)	22 (11)	
	0.098	0.045	0.204	27	
$[La(L401)_{2}]$	2.4458(17)	2.6726(19)	2.692(2)	8.38	9.700
[24(2101)3]	2.4620(17)	2.702(2)	2.7229(19)	18.24	21100
	2.1826(17) 2.4815(18)	2.762(2) 2.688(2)	2.881(2)	33.03	
	2.463(15)	2.688(12)	2.765(83)	20 (10)	
	0.036	0.029	0 189	25	
[Eu(I401)]	2347(4)	2 533(5)	2 574(5)	7.80	9 647
[()3]	2.356(3)	2.593(4)	2.592(5)	14.31	2.0.7
	2.394(3)	2.595(1) 2 584(4)	2.808(4)	34 19	
	2.366(20)	2.570(26)	2.658(106)	19 (11)	
	0.047	0.060	0 234	26	
	0.07/	0.000	0.2.57	20	

[a] Each line in the table corresponds to one and the same ligand in the complex. Numbers in bold are averaged data (with standard deviations σ in the parenthesis); values in bold and in italic are the differences between the minimum and the maximum values. [b] N(py) and N(b) are nitrogen atoms of pyridine and benzimidazole rings, respectively. [c] Dihedral angles between the planes of pyridine and benzimidazole defined by C and N atoms of core rings. [d] The shortest Ln–Ln distance in the structure. [e] Benzimidazole group is disordered over two positions. [f] Two independent molecules are present in the unit cell of these complexes.

The corresponding spectra are shown in Figure 3 and Figures S1–S8 (see the Supporting Information), whereas the main spectral features are summarised in Table 3 and Table S1 (also in the Supporting Information).

state.^[19,43] Thus, for a ligand to be a suitable sensitiser, its triplet state should be situated above the Ln emitting level and the energy gap between them is often correlated with the overall quantum yield; too large a gap leads to inefficient transfer, whereas too small a gap results in back trans-

10794 -

The ligands display a composite broad absorption band in the UV range corresponding to $\pi\!\rightarrow\!\pi^*$ transitions with a maximum at 315-331 nm, two shoulders at shorter and longer wavelengths and a cut-off between 350 and 375 nm. The maximum is shifted to lower energies in the order $(F, H) > Cl \approx Br > CH_3 > OCH_3 \approx$ OC₈H₁₇. The largest redshift is recorded for electron-donor alkoxy groups (≈ 17 nm) and can be explained by a contribution of a charge-transfer transition localised on benzimidazole ring wherein the imine moiety acts as an acceptor. The shifts are smaller for the other substituents, <6 nm. The intensity of the band is in the range $(2.2-2.6) \times$ $10^4 \text{ M}^{-1} \text{ cm}^{-1}$, and decreases in the order $Br > Cl > (OCH_3,$ CH_3)>(OC₈ H_{17} , F)>H.

Upon complex formation, the ligand-centred absorption bands sustain redshifts of about 10 nm for the maxima and 10-25 nm for the cut-offs. The wavelengths of the absorption maxima in the complexes follow the trend observed in the free ligands. A small redshift, <3 nm, is observed as lanthanum is substituted by europium. The ligand absorption in the complexes is significant, with the molar absorption coefficient reaching $(4.9-6.0) \times$ $10^4 \text{ M}^{-1} \text{ cm}^{-1}$. These features point to the ligands being adequate light-harvesting chromophores for the sensitisation of lanthanide luminescence.

In one of the preferred energy migration paths in lanthanide complexes, excitation energy is funnelled to the metal ion through the longlived ligand-centred triplet

Figure 2. Coordination environment of Eu^{III} in the complex $[Eu(L1)_3]$. Heteroatoms: O, red; N, blue; Eu, black.

Table 2. Calculated bond valence parameters.^[a]

	$V_{\rm Ln}$	$\nu_{\mathrm{Ln},i}(\mathrm{O})$		$\nu_{Ln,i}(N)$	
		, in the second s	N(py)	N(b)	N(av.)
[La(L1) ₃]	3.01	0.44(3)	0.31(1)	0.26(3)	0.28(3)
$[Eu(L1)_3]$	3.01	0.43(1)	0.32(1)	0.25(2)	0.29(4)
[Tb(L1) ₃]	2.93	0.41(3)	0.32(1)	0.25(3)	0.28(4)
$[La(L4Me)_3] (1)^{[b]}$	3.13	0.43(3)	0.32(2)	0.29(9)	0.31(7)
$[La(L4Me)_3] (2)^{[b]}$	3.04	0.42(6)	0.31(1)	0.28(6)	0.30(5)
$[Eu(L4Me)_3]$	3.01	0.41(2)	0.31(1)	0.28(5)	0.30(4)
$[Tb(L4Me)_3] (1)^{[b]}$	2.91	0.41(1)	0.31(1)	0.26(6)	0.28(5)
$[Tb(L4Me)_3] (2)^{[b]}$	2.85	0.39(5)	0.30(2)	0.26(6)	0.28(5)
[La(L4O1) ₃]	3.02	0.43(2)	0.32(1)	0.26(5)	0.29(5)
[Eu(L4O1) ₃]	3.05	0.41(2)	0.33(2)	0.27(7)	0.30(6)
all data		0.42(4)	0.31(2)	0.27(6)	0.29(5)

[a] Averaged bond-valence contribution is listed with standard deviation (σ) in parentheses. [b] Two independent molecules are present in the unit cell of these complexes.

Figure 3. Absorption spectra of ligand **HL8** $(1.60 \times 10^{-4} \text{ M})$ in DMSO and its complex $[\text{Eu}(\text{L8})_3]$ $(5.29 \times 10^{-5} \text{ M})$ in CH₂Cl₂. All other absorption spectra are similar and are provided in the Supporting Information.

fer.^[43,44] The phosphorescence spectra of the lanthanum complexes display bands with vibrational spacing on the order of 1060–1530 cm⁻¹, which is attributable to ringbreathing modes (Figure 4, Table 4). The triplet energies of the ligands ($E_{\rm T}$) have been determined from the zerophonon transition and are in the range of 21 300–18 760 cm⁻¹ (Table 4) and decrease as a function of the substituents as (H, F, Cl) > CH₃ > Br > OC₈H₁₇ > OCH₃, that is, roughly following the trend observed in the absorption spectra (Table 3). The largest redshift, 1800–2400 cm⁻¹, is observed for alkoxy-substituted ligands; for others the shift is within

Table 3. Absorption spectra of the ligands in DMSO and their europium complexes in $\rm CH_2Cl_2{}^{[n]}$

		$\lambda_{\max} [nm] (\epsilon [10^3 M^{-1} cm^{-1}])$	
HL8	315 (22)	$[Eu(\mathbf{L8})_3]$	321 (51)
HL8F	315 (23)	[Eu(L8F) ₃]	322 (52)
HL8Cl	318 (25)	$[Eu(L8Cl)_3]$	325 (56)
HL8Br	319 (26)	$[Eu(L8Br)_3]$	326 (60)
HL8Me ^[b]	321 (24)	$[\mathrm{Eu}(\mathbf{L8Me})_3] \cdot 0.5 \mathrm{H}_2\mathrm{O}$	328 (53)
HL8O8	332 (23)	$[Eu(L808)_3] \cdot 1.5 H_2O$	341 (49)
HL401 ^[b]	331 (24)	$[\mathrm{Eu}(\mathbf{L4O1})_3]\cdot\mathrm{H}_2\mathrm{O}^{[\mathrm{c}]}$	336 (56)

[a] Spectra were recorded at room temperature at 250–500 nm. Estimated errors are ± 1 nm for λ_{max} and $\pm 5\%$ for ε . Absorption data for La^{III} and Tb^{III} complexes are similar and are provided in Table S1 in the Supporting Information. [b] Elemental analyses correspond to compositions **HL8Me**·0.5HCO₂H·0.25H₂O and **HL4O1**·H₂O, respectively. [c] Recorded in DMSO. The complex is insoluble in CH₂Cl₂; its ε has been calculated by assuming that it remains un-dissociated in DMSO.

Figure 4. Phosphorescence spectra (corrected and normalised) of lanthanum complexes in the solid state at 77 K (λ_{exc} =320–340 nm; emission slit: 5 or 7 nm).

Table 4. Energies of the phonon transitions in the phosphorescence spectra of lanthanum complexes in solid state at 77 K.

			$E [{\rm cm}^{-1}]$		
	0–0	0–1	Δ	0–2	Δ
[La(L8) ₃]	21140	19650	1490	18300	1350
$[La(L8F)_3]$	21100	19570	1530	18300	1270
[La(L8Cl) ₃]	21300	-	-	-	-
[La(L8Br) ₃]·2H ₂ O	20280	19120	1160	17920	1200
[La(L8Me) ₃]	20790	19310	1490	17950	1360
[La(L8O8) ₃]·1.5 H ₂ O	19340	17950	1390	16810	1140
$[La(L401)_3] \cdot H_2O$	18760	17700	1060	16470	1230

500 cm⁻¹ apart from a surprisingly low energy for **L8Br**⁻ (down by 860 cm⁻¹). With respect to the aim of this work, the energy gap between $E_{\rm T}$ and ${}^{5}D_{0}$ states is in the 3900–1500 cm⁻¹ range, which is an almost ideal situation for sensitisation of Eu^{III} luminescence (Figure 5).

Europium-centred luminescence: Under ligand excitation, all europium complexes emit characteristic metal-centred luminescence in the solid state, CH_2Cl_2 and under the form of thin film with a thickness of approximately 50 nm. The cor-

www.chemeurj.org

FULL PAPER

Figure 5. Partial energy diagram of Eu^{III} and Tb^{III} ions, and energy of the ligand-centred triplet states in La^{III} complexes at 77 K; 1) LaL8Cl, 2) LaL8, 3) LaL8F, 4) LaL8Me, 5) LaL4Me, 6) LaL8Br, 7) LaL1, 8) LaLPh, 9) LaL8O8, 10) LaL4O1.

responding spectra are shown in Figure 6 and Figures S9–S14 (see the Supporting Information), whereas relevant parameters are listed in Table 5 and Tables S2–S3 (Supporting

Figure 6. Luminescence spectra (corrected and normalised) of $[\text{Eu}(\mathbf{L8})_3]$ that display the ${}^5\text{D}_0 \rightarrow {}^7\text{F}_J$ (J=0-4) transitions at room temperature for samples in the solid state, 8.3×10^{-4} M in CH₂Cl₂, and as thin film spin-coated on a quartz substrate; $\lambda_{\text{exc}} = 330$ nm; emission slit: 0.2 nm (solid) or 0.5 nm. Emission spectra for other europium complexes are similar and are provided in the Supporting Information.

Information). The excitation spectra display prominent ligand bands in the UV range and faint f-f transitions at 395 (${}^{5}L_{6} \leftarrow {}^{7}F_{0,1}$) and 463 nm (${}^{5}D_{2} \leftarrow {}^{7}F_{0,1}$), thus confirming the sensitisation of the europium luminescence by the ligands (Figures S15–S16 in the Supporting Information).

The europium-centred emission spectra are similar for all complexes and display sharp bands in the solid state that become broader in solution and more so in the thin film (Figure 6). They are typical of Eu^{III} ions in a low symmetry, pseudo-TCTP environment in accordance with X-ray analysis (Figure 2), with emission intensity fairly equally distributed in the 590–720 nm spectral range. The relative band intensities normalised with respect to the magnetic-dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition depend on the medium (Table S2 in the Supporting Information) and the total integrated relative intensity increases by up to 20% in going from the solid state to the solution and to the thin film. The ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition is very weak and represents only 0.5% of the total emission.

Complex		$ au_{ m obs}$ [ms]	$Q_{ m L}^{ m Ln}$ [%]	$ au_{ m rad}$ [ms]	$Q_{ ext{Eu}}^{ ext{Eu}}$ [%]	$\eta_{ m sens}$
[Eu(L8) ₃]	solid	2.95(2)	71(1)	4.60	64	≈ 100
	CH_2Cl_2	2.76(1)	52(1)	4.39	63	83
	thin film	2.46(2)	_	3.64	68	_
[Eu(L8F) ₃]	solid	3.00(2)	68(3)	4.42	68	100
	CH_2Cl_2	2.74(2)	51(1)	4.34	63	81
[Eu(L8Cl) ₃]	solid	2.94(3)	71(2)	4.42	67	≈ 100
	CH_2Cl_2	2.71(1)	51(2)	4.35	62	82
[Eu(L8Br) ₃]	solid	2.51(1)	54(1)	4.15	60	89
	CH_2Cl_2	2.73(2)	51(1)	4.28	64	80
$[Eu(L8Me)_3] \cdot 0.5 H_2O$	solid	2.69(1)	68(4)	4.38	61	≈ 100
	CH_2Cl_2	2.81(1)	52(1)	4.40	64	81
[Eu(L8O8) ₃]•1.5H ₂ O	solid	2.45(1)	52(4)	3.88	63	82
	CH_2Cl_2	2.39(2)	42(1)	4.38	55	77
$[Eu(L4O1)_3] \cdot H_2O$	solid	2.93(2)	43(2)	4.48	65	66
$[Tb(\mathbf{L1})_3] \cdot 2H_2O$	solid	0.30(2)	9.0(2)	-	-	_

[a] In the solid state, thin film or $(6.2-8.3) \times 10^{-4}$ m in CH₂Cl₂. $\lambda_{\rm exc} = 330$ nm. Standard deviations (2 σ) are given between parentheses; estimated relative errors: $\tau_{\rm obs} \pm 2\%$; $Q_{\rm L}^{\rm Eu} \pm 10\%$ (solid state); $Q_{\rm L}^{\rm Eu}, \pm 5\%$ (solution); $\tau_{\rm rad}, \pm 10\%$; $Q_{\rm Eu}^{\rm Eu}, \pm 12\%$; $\eta_{\rm sens}, \pm 22\%$ (solid state); $\eta_{\rm sens}, \pm 17\%$ (solution).

The hypersensitive ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is dominant, with *I*- $({}^{7}F_{2})/I({}^{7}F_{1}) = 1.8-2.7$, but the ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transition also has a sizeable intensity, with $I({}^{7}F_{4})/I({}^{7}F_{1}) = 1.4-1.8$. Although the relative intensities of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions vary with the complex and the medium, the proportion of light emitted by them with respect to total emission is nearly constant with averages and σ of 45(2) and 35(1)%, respectively.

More insight into the structural properties of **EuL8** and **EuL4Me** has been gained by analyzing the emission spectra of polycrystalline solid-state samples at 10 K and under high resolution (Figure S11 in the Supporting Information). The ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition, which is expected to provide a single line for a single coordination environment, does display one extremely narrow component at 17236 cm⁻¹ for **EuL8** both in the emission (full width at half-height, fwhh=1.8 cm⁻¹) and in the excitation spectra (fwhh=1.1 cm⁻¹), see Figure 7 and Figure S11 in the Supporting Information. The ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of **EuL8** displays three main bands, which is typical of a low-symmetry species; these are further split (Figure 7). A comparison with the IR spectrum points to the

Figure 7. High-resolution emission spectrum of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of [Eu(**L8**)₃] at 10 K. Inset: Excitation spectrum of the ${}^{5}D_{0} \leftarrow {}^{7}F_{0}$ transition at 10 K.

Fermi-type interaction between the electronic and vibrational states being most likely responsible for the splitting of the high-energy components (Figure S13 in the Supporting Information), as has been reported for an Eu^{III} complex with a crown ether.^[45] The splitting of the low-energy component is too large for such an interaction, but this transition could be essentially of vibronic nature. Overall, the high-resolution spectrum is consistent with a single-coordination environment of the Eu^{III} ion in EuL8. The situation is quite different for EuL4Me in that the 0-0 transition is much broader (fwhh \approx 7 cm⁻¹) and displays two components both in excitation and in emission spectra (in the latter as a shoulder; Figure S14 in the Supporting Information). Each of the equally intense three components of the 0-1 transition is split into two main components with some further fine structure (Figure S15 in the Supporting Information). Therefore, these results indicate that EuL4Me contains at least two slightly different europium sites that could arise from its less good crystallinity compared to EuL8.

The luminescence decays (τ_{obs}) are single-exponential functions for all of the complexes in all media. For solidstate samples, $\tau_{\rm obs}$ decreases by 15% when the excitation wavelength is changed from 300 to 380 nm; in other media, it is independent of λ_{exc} . The observed lifetimes are long: 2.45–3.00 ms in the solid state (λ_{exc} =330 nm) and 2.71– 2.81 ms in solution (2.39 ms for EuL808; Table 5). They are essentially temperature independent, with au_{obs} varying by less than 5-10% in going from 300 to 10 K, thereby reflecting the absence of thermally activated deactivation processes, either vibrational or electronic, that is, through LMCT states (Table S3 in the Supporting Information). Therefore, the results of the luminescence lifetime measurements are consistent with the absence of water in the inner coordination sphere of europium and suggest that it is well shielded from non-radiative deactivations in the rigid N₆O₃ environment.

Quantum yields and sensitisation efficiency: The quantum yields of the ligand-sensitised Eu^{III} luminescence (Q_L^{Eu}) are large and independent of the excitation wavelength. Their values range between 43 and 71% for solid-state samples and between 42 and 52% for solutions in CH₂Cl₂ (Table 5). In the solid state, they correlate with the energy of the ligand triplet state, both parameters decreasing in the order (H, F, Cl) \approx CH₃ > Br > OC₈H₁₇ > OCH₃ (Figure 8). In solution, Q_L^{Eu} and τ_{obs} are less sensitive to small changes in triplet-state energy and are essentially constant for all the complexes, apart from the lower values for **EuL808** (Figure 8).

The intrinsic quantum yields of Eu^{III} (i.e., measured upon direct f–f excitation) could not be determined experimentally due to very low absorption intensity. Therefore, quantitative analysis of the photophysical parameters has been performed in terms of Equation (1), whereas the radiative lifetimes of Eu(⁵D₀) have been calculated from Equation (4), in which *n* is the refractive index (1.5 for solid-state metal–organic complexes; 1.4242 for CH₂Cl₂), $A_{MD,0}$ is the spontaneous emission probability for the ⁵D₀ \rightarrow ⁷F₁ transition in vacuo

FULL PAPER

Figure 8. Dependence of the overall quantum yield of europium on the triplet-state energy (at 77 K) of the ligands in the solid state (**n**) and in CH_2Cl_2 (\Box) at room temperature. The data points have been taken from the present study and from ref. [32]. 1) **EuL8Cl**, 2) **EuL8**, 3) **EuL8F**, 4) **EuL8Me**, 5) **EuL4Me**, 6) **EuL8Br**, 7) **EuL1**, 8) **EuLPh**, 9) **EuL808**, 10) **EuL401**. The dashed lines indicate the energy of the 5D_1 and 5D_2 levels of europium.

(14.65 s⁻¹), and I_{tot}/I_{MD} is the ratio of the total integrated intensity of the corrected Eu^{III} emission spectrum to the integrated intensity of the magnetic dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition (Table S2 in the Supporting Information):^[46]

$$1/\tau_{\rm rad} = A_{\rm MD,0} \, n^3 \left(I_{\rm tot} / I_{\rm MD} \right) \tag{4}$$

The calculated radiative lifetimes fall into the narrow range of 4.15–4.60 ms in the solid state (3.88 ms for **EuL808**) and 4.28–4.40 ms in solution. The intrinsic quantum yields of europium estimated from the ratio τ_{obs}/τ_{rad} are large (Table 5), with averages equal to 62(4)% for solid-state samples and 63(1)% for solutions in CH₂Cl₂ (55% for **EuL808**). Again, the small variation of both the radiative lifetimes and intrinsic quantum yields is to be traced back to the similar N₆O₃ coordination environment for all the complexes.

The sensitisation efficiencies calculated from the ratio $Q_{\rm L}^{\rm Eu}/Q_{\rm Eu}^{\rm Eu}$ are close to unity for solid-state complexes, apart from the ones containing ligands with alkoxy groups (66–82%). In solution, $\eta_{\rm sens}$ values become smaller (77–83%), thereby resulting in lower overall quantum yields. The decrease of $\eta_{\rm sens}$ in solution can be explained by energy losses within the ligands both through collisional deactivation with solvent molecules and through their spatial re-arrangement with respect to the metal ion as a result of labile ligand-lanthanide binding (the latter may also be responsible for the broadening of the emission spectra in solution).

With respect to sensitisation of terbium luminescence in the solid state at room temperature, only the complex **TbL1** is emissive with $Q_{\rm L}^{\rm Tb} = 9.0\%$ and $\tau_{\rm obs} = 0.3$ ms (Figure S17 in the Supporting Information), whereas **TbL4Me** is not. The triplet states of these ligands (20160 and 20410 cm⁻¹, respectively, at 77 K) are close in energy to the ⁵D₄ emissive level (≈ 20500 cm⁻¹), which probably results in Tb-to-ligand back energy transfer. On the other hand, both terbium complexes are emissive at 10 K with relatively long lifetimes: 1.45(1) ms for **TbL1** and 1.05(2) ms for **TbL4Me**. These two complexes represent an interesting study case since, despite

www.chemeurj.org

very similar $E_{\rm T}$ energy, they show very different luminescent properties at room temperature.

Conclusion

Tridentate benzimidazole-substituted pyridine-2-carboxylates readily form 9-coordinate neutral homoleptic anhydrous lanthanide complexes and very efficiently sensitise the luminescence of europium, thereby leading to overall quantum yields as large as 71% in the solid state and 52% in CH_2Cl_2 .

The photophysical properties of the europium complexes with ligands L8R⁻ are not very sensitive to the nature of the substituent on the benzimidazole ring and remain essentially the same for R = H, F, Cl and Me. The heavy bromine atom redshifts the triplet energy of the ligand, which results in a large detrimental effect in solid-state samples. Other major changes are observed in the case of alkoxy groups, which significantly redshift absorption and triplet energy. As a result, the triplets in EuL4O1 and EuL8O8 are found to be only $< 2050 \text{ cm}^{-1}$ above the ⁵D₀ state, therefore allowing potential thermal back-energy transfer from europium to the ligand. However, a significant contribution of this deactivation pathway is unlikely since the observed lifetimes are almost temperature independent (Table S3 in the Supporting Information). On the other hand, temperature-independent energy losses in these two complexes may occur within ligands through the alkoxy-to-imine intra-benzimidazole charge-transfer state before energy transfer to the metal ion takes place. Whatever the exact mechanism is, its outcome is a lower sensitisation efficiency ($\eta_{sens} < 82\%$). However, despite these energy losses, EuL4O1 and EuL8O8 display sizeable quantum yields in the range of 42-52%.

Figure 8 reveals that $Q_{\rm L}^{\rm Eu}$ is approximately a monotonic function of the triplet-state energy in the investigated range and that quantum yields equal to or larger than 50% are obtained when $E_{\rm T} > 19300 \,{\rm cm}^{-1}$ for solid-state samples or $E_{\rm T} >$ 20300 cm⁻¹ for samples in CH₂Cl₂. This provides a guideline for the design of ligands suitable for the sensitisation of Eu^{III} luminescence. In the investigated systems, the ligandto-Eu^{III} energy transfer is almost quantitative in the solid state and approximately 80% in CH₂Cl₂ for all of the complexes apart from **EuL808** and **EuL401**.

The remarkable photophysical properties of the europium complexes further result from the good protection of the metal ion by the ligands from non-radiative deactivation provided by the N₆O₃ coordination environment. As a consequence, long and temperature-independent lifetimes are observed (2.4–3.0 ms). At the same time, the radiative lifetimes of Eu^{III} are relatively short (in the 3.6–4.6 ms range), which allows emissive processes to compete efficiently with non-radiative ones. As a comparison, a radiative lifetime of 9.7 ms is reported for the Eu^{III} aqua ion,^[18] which would correspond to 6.8 ms in the solid state when applying the refractive index correction [1.5 vs. 1.333; see Eq. (4)]. The shorter lifetime implies more orbital mixing in the com-

plexes, probably due to the larger polarisability of N and O(carboxylate) atoms of the organic ligand compared to O-(water) and the lower symmetry of the coordination environment (C_1 for N₆O₃ and D_{3h} for O₉).

In conclusion, the described europium complexes with readily accessible benzimidazole-substituted pyridine-2-carboxylates are promising building blocks for the design of luminescent materials since they display large absorption, high luminescence efficiency, long luminescence lifetimes and adequate film-forming properties.

Experimental Section

General methods, equipment and chemicals used: Elemental analyses were performed by Dr. E. Solari, Service for Elemental Analysis, Institute of Chemical and Chemical Engineering Sciences (EPFL). ¹H NMR spectra were recorded using a Bruker Avance DRX 400 MHz spectrometer. Absorption spectra were measured using a Perkin-Elmer Lambda 900 UV/Vis/NIR spectrometer at room temperature in the spectral range 250–500 nm. Estimated errors are ± 1 nm for λ_{max} and ± 5 % for ϵ . Luminescence spectra were measured using a Fluorolog FL 3-22 spectrometer from Horiba-Jobin Yvon-Spex equipped for both visible and NIR measurements and were corrected for the instrumental function. Quantum yields were determined using the same instrument through an absolute method with a home-modified integrating sphere. Luminescence lifetimes were measured with a previously described instrumental setup.^[32,36] Spectroscopic studies were conducted in optical cells of 2 mm path length or 2 mm i.d. quartz capillaries under air with the samples of lanthanide complexes obtained directly from the synthesis and used without further purification. The solutions of the complexes in CH2Cl2 (Fisher Scientific, analytical reagent grade) were freshly prepared before each experiment. Thin films have been spin-coated from a solution of [Eu(L8)₃] in CH₂Cl₂(2 mgmL⁻¹) on quartz substrates using a P-6708D spin-coater (Cookson Electronics). The rotation of substrate was 2000 rpm, and the solution volume was 1 mL. Their thickness has been estimated by profilometry to be approximately 50 nm.

X-ray crystallography: The crystal data and structure refinement parameters are presented in Table 6. To grow crystals for X-ray analysis, a small batch (1-2 mg) of the complex was dissolved in a small volume (1-3 mL) of boiling CH₃CN in the case of **EuL4Me** and **LnL4O1** (La, Eu), or CH₃CN/CH₃OH for others. This was followed by cooling and slow evaporation of the solution for 1–4 weeks under air in the dark.

Data collection for the eight crystal structures was performed at low temperature using $Mo_{K\alpha}$ radiation. An Oxford Diffraction Sapphire/KM4 CCD was employed for **EuL1**, **EuL4O1** and **LnL4Me** (La, Eu), whereas the remaining samples were measured using a Bruker APEX II CCD. Both diffractometers have a kappa geometry goniometer. Data were reduced by means of CrysAlis PRO^[47] for **EuL1**, **EuL4O1** and **LnL4Me** (La, Eu) or EvalCCD^[48] for others and then corrected for absorption.^[49] Solution and refinement for all crystal structures were performed by using SHELX.^[50] All structures were refined using full-matrix least-squares on F^2 with all non-hydrogen atoms anisotropically defined. Hydrogen atoms were placed in calculated positions by means of the "riding" model.

The following disorder problems have been encountered during the last stages of refinement. 1) For **LnL401** (La, Eu), two CH₃CN were highly disordered and their disorder dealt also with the presence of $0.5 H_2 O$. They have been treated by the split model and then some constraints (equal anisotropic displacement parameters (EADP) command in SHELX)^[50] applied in the case of **EuL401**. 2) In the case of **EuL4Me**, an alkyl chain (C14, ..., C17) was disordered and a split model with some restraints (SADI, SIMU)^[50] was applied to treat it. 3) The very low quality and weakness of the measured diffraction for **LaL4Me** prevented us from treating the solvent as was done for **TbL4Me**. The SQUEEZE routine in-

10798 ·

Table 6. Crystal data and structure refinement.^[a]

FULL PAPER

	$[La(L1)_3]$	$[Eu(L1)_3]$	[Tb(L1) ₃]	[La(L4Me) ₃]
formula	C42H20LaN0O6CH2CN	C42H20EuN0O6CH2CN	C42H20N0OcTb·2.5CH2CN	C54H54LaN006
М.,	936.71	949.76	1018.30	1063.97
T[K]	100(2)	140(2)	100(2)	140(2)
crystal system	monoclinic	monoclinic	triclinic	monoclinic
space group	P_{2}/c	$P2_{1/c}$	PĪ	P2./c
a [Å]	112_{1}	112030(4)	11 0872(14)	21.8689(17)
$h \begin{bmatrix} \lambda \end{bmatrix}$	24.856(2)	24 5654(8)	11.0072(14) 11.2308(17)	20.4015(12)
	14.052(2)	14.0080(5)	11.2596(17)	25.951(2)
(A)	14.033(2)	14.0980(3)	78 020(0)	23.931(2)
	90 100 221 (10)	90 100 650(2)	76.929(9)	90
<i>p</i> []	100.551(10)	100.039(3)	74.700(8) 85.722(10)	111.986(9)
γ []	90	90	83.722(10)	90
V [A ⁵]	3889.4(8)	3812.9(2)	2130.9(5)	10/36.3(14)
Z	4	4	2	8
$\rho_{\text{calcd}} [\text{Mgm}^{-3}]$	1.600	1.655	1.58/	1.316
$\mu [\text{mm}^{-1}]$	1.164	1.712	1.726	0.851
F(000)	1888	1912	1026	4368
crystal size [mm ³]	$0.36 \times 0.23 \times 0.19$	$0.40 \times 0.32 \times 0.22$	$0.34 \times 0.26 \times 0.14$	$0.10 \times 0.08 \times 0.06$
θ range [°]	3.37–27.51	2.70-26.37	3.40-27.50	2.57-25.03
index ranges	$-14 \le h \le 14$	$-4 \le h \le 14$	$-14 \le h \le 14$	$-26 \le h \le 23$
	$-32 \leq k \leq 31$	$-30 \le k \le 17$	$-14 \le k \le 14$	$-24 \leq k \leq 24$
	$-18 \le l \le 18$	$-17 \le l \le 17$	$-23 \le l \le 23$	$-30 \le l \le 30$
reflns collected	85674	28347	42 605	86741
independent reflns	8927 ($R_{\rm int} = 0.0715$)	7752 ($R_{\rm int} = 0.0672$)	9645 ($R_{\rm int} = 0.0518$)	$18927 (R_{int} = 0.2666)$
completeness to θ [°] ([%])	27.51 (99.7)	26.37 (99.5)	27.50 (98.4)	25.03 (99.8)
max/min transm	0.802/0.677	0.686/0.659	0.785/0.552	0.950/0.816
data/restraints/params	8927/0/550	7752/0/550	9645/18/676	18927/900/1177
$GOE \text{ on } F^2$	1 345	0.911	1 165	0.911
final R indices $(I > 2\sigma(I))$	$R_1 = 0.0534 \text{ w}R_2 = 0.1456$	$R_1 = 0.0360 \text{ w}R_2 = 0.0569$	$R_1 = 0.0392 \text{ w}R_2 = 0.0962$	$R_1 = 0.1127 \ wR_2 = 0.2190$
R indices (all data)	$R_1 = 0.0554, WR_2 = 0.1450$ $R_1 = 0.0653, WR_2 = 0.1406$	$R_1 = 0.0500, WR_2 = 0.0509$ $R_1 = 0.0703, WR_2 = 0.0618$	$R_1 = 0.0332, WR_2 = 0.0302$ $R_1 = 0.0401, WR_2 = 0.1022$	$R_1 = 0.1127, wR_2 = 0.2190$ $R_1 = 0.2711, wR_2 = 0.2752$
largest diff most/hole [a^{λ} ⁻³]	1.870/ 1.252	$R_1 = 0.0705, WR_2 = 0.0018$	$K_1 = 0.0491, WK_2 = 0.1022$	$R_1 = 0.2711, WR_2 = 0.2752$
largest dill. peak/noie [eA]	1.870/-1.552	0.7257-0.769	1.80//-1.13/	5.488/-2.070
	$[\mathrm{Eu}(\mathbf{L4Me})_3]$	$[\mathrm{Tb}(\mathbf{L4Me})_3]$	$[La(L401)_3]$	$[\operatorname{Eu}(\mathbf{L4O1})_3]$
formula	$C_{54}H_{54}EuN_9O_6$	$2 C_{54} H_{54} N_9 O_6 T b$	$C_{54}H_{54}LaN_9O_9$	C ₅₄ H ₅₄ EuN ₉ O ₉ ∙
			2 CH CN 0 5 H O	
	$2 CH_3 CN$	$3 \text{CH}_3 \text{CN} \cdot 4 \text{H}_2 \text{O}$	$5CH_3CN \cdot 0.5H_2O$	$3 \text{CH}_3 \text{CN} \cdot 0.5 \text{H}_2 \text{O}$
M _r	2 CH ₃ CN 1159.13	3 CH ₃ CN·4 H ₂ O 2363.19	1244.14	3 CH ₃ CN·0.5 H ₂ O 1257.19
$M_{\rm r}$ T [K]	2 CH ₃ CN 1159.13 140(2)	3 CH ₃ CN·4 H ₂ O 2363.19 100(2)	1244.14 100(2)	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2)
<i>M</i> _r <i>T</i> [K] crystal system	2 CH ₃ CN 1159.13 140(2) monoclinic	3 CH ₃ CN·4H ₂ O 2363.19 100(2) monoclinic	1244.14 100(2) triclinic	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic
<i>M</i> _r <i>T</i> [K] crystal system space group	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$	1244.14 100(2) triclinic <i>P</i> 1	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic <i>P</i> 1
M_r T [K] crystal system space group a [Å]	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3)	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3)	1244.14 100(2) triclinic $P\bar{1}$ 12.7553(11)	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic <i>P</i> 1 12.5901(7)
M_r T [K] crystal system space group a [Å] b [Å]	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4)	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3)	$3CH_3CN0.5H_2O$ 1244.14 100(2) triclinic $P\bar{1}$ 12.7553(11) 15.0195(16)	$3 \text{ CH}_3 \text{ CN} \cdot 0.5 \text{ H}_2\text{O}$ 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10)
M_r T [K] crystal system space group a [Å] b [Å] c [Å]	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6)	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4)	$\begin{array}{c} 3 C R_3 C N 0.5 R_2 O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \end{array}$	$3 \text{ CH}_3 \text{CN} \cdot 0.5 \text{ H}_2 \text{O}$ 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10)
M_{r} $T [K]$ crystal system space group a [Å] $b [Å]$ $c [Å]$ $a [°]$	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90	$\begin{array}{c} 3 C R_3 C N 0.5 R_2 O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic <i>P</i> 1 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5)
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104 173(3)	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7)	3 CH ₃ CN0.5 H ₂ O 1244.14 100(2) triclinic <i>P</i> Ī 12.7553(11) 15.0195(16) 16.1388(18) 78.899(8) 73.727(9)	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic <i>P</i> 1 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5)
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90	$\begin{array}{c} 3CH_{3}CN0.5H_{2}O\\ 1244.14\\ 100(2)\\ triclinic\\ P\bar{1}\\ 12.7553(11)\\ 15.0195(16)\\ 16.1388(18)\\ 78.899(8)\\ 73.727(9)\\ 77.393(8)\\ \end{array}$	$3 \text{ CH}_3 \text{CN} \cdot 0.5 \text{ H}_2 \text{O}$ 1257.19 140(2) triclinic $P\overline{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5)
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $V [Å^3]$	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2)	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3)	3 CH ₃ CN0.5 H ₂ O 1244.14 100(2) triclinic Pī 12.7553(11) 15.0195(16) 16.1388(18) 78.899(8) 73.727(9) 77.393(8) 2867 8(5)	$3 \text{ CH}_3 \text{CN} \cdot 0.5 \text{ H}_2 \text{O}$ 1257.19 140(2) triclinic $P\overline{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3)
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^{3}]$ Z	2 CH ₃ CN 1159.13 140(2) monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4	$\begin{array}{c} 3CH_{3}CN0.5H_{2}O\\ 1244.14\\ 100(2)\\ triclinic\\ P\bar{1}\\ 12.7553(11)\\ 15.0195(16)\\ 16.1388(18)\\ 78.899(8)\\ 73.727(9)\\ 77.393(8)\\ 2867.8(5)\\ 2\end{array}$	$3 \text{ CH}_3 \text{CN} \cdot 0.5 \text{ H}_2 \text{O}$ 1257.19 140(2) triclinic $P\overline{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^{3}]$ Z $C [Mem^{-3}]$	2 CH ₃ CN 1159.13 140(2) monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.450	$3 - C + 3 - C + 0.5 - H_2 - O - 124 - 14 - 100(2) - 100(2) - 100(2) - 110$	$3 CH_3 CN \cdot 0.5 H_2 O$ 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^{3}]$ Z $\rho_{calc} [Mg m^{-3}]$ $[mvr^{-1}]$	2 CH ₃ CN 1159.13 140(2) monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241	$3 \text{ CH}_3 \text{CN} \cdot 4 \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.459 1.201	$\begin{array}{c} 3 C H_3 C H_{0.5} H_2 O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \end{array}$	$3 CH_3 CN \cdot 0.5 H_2 O$ 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.192
M_r $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $\rho_{calcd} [Mgm^{-3}]$ $\mu [mm^{-1}]$ $Z^{(00)}$	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2294	$3 \text{ CH}_3 \text{CN-4} \text{H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.459 1.381 4956	$\begin{array}{c} 3 C H_3 C H_{0.5} H_2 O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1082 \end{array}$	$3 CH_3 CN \cdot 0.5 H_2 O$ 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1204
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^{3}]$ Z $\rho_{calcd} [Mgm^{-3}]$ $\mu [mm^{-1}]$ $F(000)$	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384	$3 \text{ CH}_3 \text{CN-4} \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P_{2_1/c}$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.459 1.381 4856	$\begin{array}{c} 3 \ C \ R_3 \ C \ N \ 0.5 \ R_2 \ 0 \\ 1244.14 \\ 100(2) \\ triclinic \\ P\overline{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic <i>P</i> Ī 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³]	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 $0.45 \times 0.39 \times 0.25$	$3 \text{ CH}_3 \text{CN-4} \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P_{2_1/c}$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$	$\begin{array}{c} 3 C R_3 C N 0.5 R_2 O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 0.51 \times 0.16 \times 0.12 \\ \end{array}$	$3 CH_3 CN \cdot 0.5 H_2 O$ 1257.19 140(2) triclinic $P\overline{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 $0.32 \times 0.30 \times 0.25$
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°]	$2 \text{ CH}_3 \text{CN}$ 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 $0.45 \times 0.39 \times 0.25$ 2.69-26.37	$3 \text{ CH}_3 \text{CN-4} \text{ H}_2 \text{O}$ 2363.19 100(2) monoclinic $P2_1/c$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ 3.31-27.51	$\begin{array}{c} 3 C R_3 C N 0.5 R_2 O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31 - 27.50 \end{array}$	$3 \text{ CH}_3 \text{CN} \cdot 0.5 \text{ H}_2 \text{O}$ 1257.19 140(2) triclinic $P\overline{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 $0.32 \times 0.30 \times 0.25$ 2.62-26.02
M_r T [K] crystal system space group a [Å] b [Å] c [Å] c [Å] c [Å] c [Å] γ [°] γ [°] γ [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges	$\begin{array}{l} 2{\rm CH_3CN} \\ 1159.13 \\ 140(2) \\ monoclinic \\ P2_1/n \\ 12.5508(3) \\ 19.3849(4) \\ 22.5701(6) \\ 90 \\ 104.173(3) \\ 90 \\ 5324.1(2) \\ 4 \\ 1.446 \\ 1.241 \\ 2384 \\ 0.45 \times 0.39 \times 0.25 \\ 2.69-26.37 \\ -15 \leq h \leq 15 \end{array}$	$\begin{array}{c} 3{\rm CH_3CN}{\cdot}4{\rm H_2O}\\ 2363.19\\ 100(2)\\ monoclinic\\ P2_1/c\\ 22.013(3)\\ 20.350(3)\\ 25.934(4)\\ 90\\ 112.221(7)\\ 90\\ 10755(3)\\ 4\\ 1.459\\ 1.381\\ 4856\\ 0.51\times0.31\times0.23\\ 3.31{-}27.51\\ -28 \leq h \leq 28 \end{array}$	$\begin{array}{c} 3 \subset \mathrm{H}_3 \subset \mathrm{N} \circ \mathrm{O} \cdot \mathrm{H}_2 \mathrm{O} \\ 1244.14 \\ 100(2) \\ \mathrm{triclinic} \\ P\bar{\mathrm{I}} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31-27.50 \\ -16 \leq h \leq 16 \end{array}$	$\begin{array}{c} 3{\rm CH}_3{\rm CN}\cdot 0.5{\rm H}_2{\rm O}\\ 1257.19\\ 140(2)\\ {\rm triclinic}\\ P\bar{1}\\ 12.5901(7)\\ 14.9590(10)\\ 16.1459(10)\\ 78.632(5)\\ 73.446(5)\\ 77.922(5)\\ 2819.4(3)\\ 2\\ 1.481\\ 1.183\\ 1294\\ 0.32\times 0.30\times 0.25\\ 2.62-26.02\\ -15\leq h\leq 15 \end{array}$
M_r T [K] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges	$\begin{array}{l} 2{\rm CH_3CN} \\ 1159.13 \\ 140(2) \\ monoclinic \\ P2_1/n \\ 12.5508(3) \\ 19.3849(4) \\ 22.5701(6) \\ 90 \\ 104.173(3) \\ 90 \\ 5324.1(2) \\ 4 \\ 1.446 \\ 1.241 \\ 2384 \\ 0.45 \times 0.39 \times 0.25 \\ 2.69-26.37 \\ -15 \leq h \leq 15 \\ -21 \leq k \leq 24 \end{array}$	$3 CH_{3}CN \cdot 4 H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$	$\begin{array}{l} 3 \subset \mathrm{H}_{3} \subset \mathrm{H}_{0} \subset \mathrm{H}_{2} \simeq $	$\begin{array}{l} 3{\rm CH}_3{\rm CN}\cdot 0.5{\rm H}_2{\rm O}\\ 1257.19\\ 140(2)\\ {\rm triclinic}\\ P\bar{1}\\ 12.5901(7)\\ 14.9590(10)\\ 16.1459(10)\\ 78.632(5)\\ 73.446(5)\\ 77.922(5)\\ 2819.4(6)\\ 2\\ 1.481\\ 1.183\\ 1294\\ 0.32\times 0.30\times 0.25\\ 2.62-26.02\\ -15\leq h\leq 15\\ -17\leq k\leq 18 \end{array}$
M_{r} $T [K]$ crystal system space group $a [Å]$ $b [Å]$ $c [Å]$ $a [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^{3}]$ Z $\rho_{catcd} [Mg m^{-3}]$ $\mu [mm^{-1}]$ $F(000)$ crystal size [mm ³] $\theta range [°]$ index ranges	$\begin{array}{l} 2{\rm CH_3CN} \\ 1159.13 \\ 140(2) \\ {\rm monoclinic} \\ P2_l/n \\ 12.5508(3) \\ 19.3849(4) \\ 22.5701(6) \\ 90 \\ 104.173(3) \\ 90 \\ 5324.1(2) \\ 4 \\ 1.446 \\ 1.241 \\ 2384 \\ 0.45 \times 0.39 \times 0.25 \\ 2.69-26.37 \\ -15 \leq h \leq 15 \\ -21 \leq k \leq 24 \\ -28 \leq l \leq 28 \end{array}$	$3 CH_{3}CN-4H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$	$3 - C + 3 - C + 0.5 + H_2 - O = 124.14$ $100(2)$ $100(2)$ $100(2)$ $11 - 12.7553(11)$ $15.0195(16)$ $16.1388(18)$ $16.1388(18)$ $16.1388(18)$ $16.1388(18)$ $17.393(8)$ $2867.8(5)$ 2 1.441 0.814 1282 $0.51 \times 0.16 \times 0.12$ $3.31 - 27.50$ $-16 \le h \le 16$ $-19 \le k \le 19$ $-20 \le l \le 20$	$3 CH_3CN \cdot 0.5 H_2O$ 1257.19 $140(2)$ triclinic $P\overline{1}$ $12.5901(7)$ $14.9590(10)$ $16.1459(10)$ $78.632(5)$ $73.446(5)$ $77.922(5)$ $2819.4(3)$ 2 1.481 1.183 1294 $0.32 \times 0.30 \times 0.25$ $2.62-26.02$ $-15 \le h \le 15$ $-17 \le k \le 18$ $-18 \le l \le 19$
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_l/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69–26.37 -15 $\leq h \leq 15$ -21 $\leq k \leq 24$ -28 $\leq l \leq 28$ 41 483	$3 CH_{3}CN-4H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$ 258860	$\begin{array}{l} 3 C H_{3} C N 0.5 H_{2} O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31 - 27.50 \\ -16 \leq h \leq 16 \\ -19 \leq k \leq 19 \\ -20 \leq l \leq 20 \\ 70501 \end{array}$	$3 CH_3CN+0.5 H_2O$ 1257.19 $140(2)$ triclinic $P\overline{1}$ $12.5901(7)$ $14.9590(10)$ $16.1459(10)$ $78.632(5)$ $73.446(5)$ $77.922(5)$ $2819.4(3)$ 2 1.481 1.183 1294 $0.32 \times 0.30 \times 0.25$ $2.62-26.02$ $-15 \le h \le 15$ $-17 \le k \le 18$ $-18 \le l \le 19$ 21213
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges reflns collected independent reflns	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69-26.37 -15 ≤ h ≤ 15 -21 ≤ k ≤ 24 -28 ≤ l ≤ 28 41 483 10815 (<i>R</i> (int) = 0.0730)	$3 CH_{3}CN \cdot 4H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$ 25.8860 $24.631 (R(int) = 0.0629)$	$\begin{array}{l} 3 \mbox{CH}_3 \mbox{CN}_{0.5} \mbox{H}_2 \mbox{O}\\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31 \mbox{-} 27.50 \\ -16 \le h \le 16 \\ -19 \le k \le 19 \\ -20 \le l \le 20 \\ 70 \mbox{SO}1 \\ 13137 \ (R(int) = 0.0569) \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62-26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21213 11062 (R(int) = 0.1069)
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [Å3] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges reflns collected independent reflns completeness to θ [°] ([%])	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69-26.37 -15 ≤ h ≤ 15 -21 ≤ k ≤ 24 -28 ≤ l ≤ 28 41 483 10815 (R(int) = 0.0730) 26.37 (99.3)	$3 CH_{3}CN \cdot 4H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$ 258860 $24631 (R(int) = 0.0629)$ $27.51 (99.6)$	$\begin{array}{l} 3 C H_{3} C N 0.5 H_{2} O \\ 1244.14 \\ 100(2) \\ triclinic \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31-27.50 \\ -16 \leq h \leq 16 \\ -19 \leq k \leq 19 \\ -20 \leq l \leq 20 \\ 70501 \\ 13137 (R(int) = 0.0569) \\ 27.50 (99.6) \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62-26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21213 11062 (R(int) = 0.1069) 26.02 (99.4)
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [Å] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges reflns collected independent reflns completeness to θ [°] ([%]) max/min transm	$\begin{array}{c} 2{\rm CH_3CN} \\ 1159.13 \\ 140(2) \\ monoclinic \\ P2_1/n \\ 12.5508(3) \\ 19.3849(4) \\ 22.5701(6) \\ 90 \\ 104.173(3) \\ 90 \\ 5324.1(2) \\ 4 \\ 1.446 \\ 1.241 \\ 2384 \\ 0.45 \times 0.39 \times 0.25 \\ 2.69-26.37 \\ -15 \leq h \leq 15 \\ -21 \leq k \leq 24 \\ -28 \leq l \leq 28 \\ 41 483 \\ 10815 \ (R(int) = 0.0730) \\ 26.37 \ (99.3) \\ 1.00000/0.88680 \end{array}$	$\begin{array}{l} 3{\rm CH_3CN}{\cdot}4{\rm H_2O} \\ 2363.19 \\ 100(2) \\ \text{monoclinic} \\ P2_1/c \\ 22.013(3) \\ 20.350(3) \\ 25.934(4) \\ 90 \\ 112.221(7) \\ 90 \\ 10755(3) \\ 4 \\ 1.459 \\ 1.381 \\ 4856 \\ 0.51 \times 0.31 \times 0.23 \\ 3.31{-}27.51 \\ -28 {\leq} h {\leq} 28 \\ -26 {\leq} k {\leq} 26 \\ -33 {\leq} l {\leq} 33 \\ 258860 \\ 24631(R({\rm int}) {=} 0.0629) \\ 27.51(99.6) \\ 0.728/0.540 \end{array}$	$\begin{array}{l} 3 \mbox{CH}_3 \mbox{CN}_{0.5} \mbox{H}_2 \mbox{O} \\ 1244.14 \\ 100(2) \\ triclinic \\ \mbox{P\overline{1}$} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31 \mbox{-}27.50 \\ -16 \mbox{\leq} h \mbox{\leq} 16 \\ -19 \mbox{\leq} k \mbox{\leq} 19 \\ -20 \mbox{<} l \mbox{<} 20 \\ 70501 \\ 13137 \mbox{ (R(int) = 0.0569)} \\ 27.50 \mbox{ (99.6)} \\ 1.0000/0.7964 \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62-26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21.213 11 062 (R(int) = 0.1069) 26.02 (99.4) 0.744/0.663
M_r T [K] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] V [Å] Z ρ_{calcd} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges reflns collected independent reflns completeness to θ [°] ([%]) max/min transm data/restraints/params	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69–26.37 -15 $\leq h \leq 15$ -21 $\leq k \leq 24$ -28 $\leq l \leq 28$ 41 483 10815 (<i>R</i> (int) = 0.0730) 26.37 (99.3) 1.00000/0.88680 10815/27/713	$3 CH_{3}CN \cdot 4H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$ 25.8860 $24 631 (R(int) = 0.0629)$ $27.51 (99.6)$ $0.728/0.540$ $24631/0/1378$	$\begin{array}{l} 3 \text{C}\text{H}_3 \text{C}\text{N} 0.5 \text{ H}_2 \text{O} \\ 1244.14 \\ 100(2) \\ \text{triclinic} \\ P\overline{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31 - 27.50 \\ -16 \leq h \leq 16 \\ -19 \leq k \leq 19 \\ -20 \leq l \leq 20 \\ 70501 \\ 13137 \ (R(\text{int}) = 0.0569) \\ 27.50 \ (99.6) \\ 1.0000/0.7964 \\ 13137/3/808 \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\overline{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62-26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21213 11 062 (R(int) = 0.1069) 26.02 (9.4) 0.744/0.663 11062/9/773
M_r T [K] crystal system space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] V [Å] Z ρ_{cated} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges reflns collected independent reflns completeness to θ [°] ([%]) max/min transm data/restraints/params GOF on F^2	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69–26.37 -15 $\leq h \leq 15$ -21 $\leq k \leq 24$ -28 $\leq l \leq 28$ 41 483 10815 ($R(int) = 0.0730$) 26.37 (99.3) 1.00000/0.88680 10815/27/713 0.886	$3 CH_{3}CN-4H_{2}O$ 2363.19 $100(2)$ monoclinic $P2_{1}/c$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$ 25.8860 $24 631 (R(int) = 0.0629)$ $27.51 (99.6)$ $0.728/0.540$ $24 631/0/1378$ 1.140	$\begin{array}{l} 3 \text{C}\text{H}_{3} \text{C}\text{N} 0.5 \text{ H}_{2}\text{O} \\ 1244.14 \\ 100(2) \\ \text{triclinic} \\ P\overline{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31 - 27.50 \\ -16 \leq h \leq 16 \\ -19 \leq k \leq 19 \\ -20 \leq l \leq 20 \\ 70501 \\ 13137 (R(\text{int}) = 0.0569) \\ 27.50 (99.6) \\ 1.0000/0.7964 \\ 13137/3/808 \\ 1.130 \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62-26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21213 11062 (R(int) = 0.1069) 26.02 (99.4) 0.744/0.663 11062/9/773 0.798
M_r T [K] crystal system space group a [Å] b [Å] c [Å] d range [°] index ranges c [°] ([%]) max/min transm data/restraints/params GOF on F^2 final R indices ($L > 2\sigma(L)$)	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69-26.37 -15 $\leq h \leq 15$ -21 $\leq k \leq 24$ -28 $\leq l \leq 28$ 41 483 10815 ($R(int) = 0.0730$) 26.37 (99.3) 1.00000/0.88680 10815/27/713 0.886 $R1 = 0.0389 \ wR2 = 0.0617$	3 CH ₃ CN-4 H ₂ O 2363.19 100(2) monoclinic $P_{2_1/c}$ 22.013(3) 20.350(3) 25.934(4) 90 112.221(7) 90 10755(3) 4 1.459 1.381 4856 0.51 × 0.31 × 0.23 3.31–27.51 -28 $\leq h \leq 28$ -26 $\leq k \leq 26$ -33 $\leq l \leq 33$ 25.8860 24.631 (<i>R</i> (int) = 0.0629) 27.51 (99.6) 0.728/0.540 24.631/0/1378 1.140 <i>R</i> 1 = 0.0471 w <i>R</i> 2 = 0.0982	$3 - C + 3 - C + 0.5 + 120$ 1244.14 $100(2)$ $112.7553(11)$ $15.0195(16)$ $16.1388(18)$ $78.899(8)$ $73.727(9)$ $77.393(8)$ $2867.8(5)$ 2 1.441 0.814 1282 $0.51 \times 0.16 \times 0.12$ $3.31-27.50$ $-16 \le h \le 16$ $-19 \le k \le 19$ $-20 \le l \le 20$ 70501 $13137 (R(int) = 0.0569)$ $27.50 (99.6)$ $1.0000/0.7964$ $13137/3/808$ 1.130 $R1 = 0.0370 \ wR2 = 0.0628$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62-26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21.213 11.062 (R(int) = 0.1069) 26.02 (99.4) 0.744/0.663 11.062/9/773 0.798 R1 = 0.0635 wR2 = 0.0559
M_r T [K] crystal system space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] γ [°] γ [°] V [Å3] Z ρ_{caled} [Mg m ⁻³] μ [mm ⁻¹] F(000) crystal size [mm ³] θ range [°] index ranges reflns collected independent reflns completeness to θ [°] ([%]) max/min transm data/restraints/params GOF on F^2 final <i>R</i> indices ($I > 2\sigma(I)$) <i>R</i> indices (all data)	2 CH ₃ CN 1159.13 140(2) monoclinic $P2_1/n$ 12.5508(3) 19.3849(4) 22.5701(6) 90 104.173(3) 90 5324.1(2) 4 1.446 1.241 2384 0.45 × 0.39 × 0.25 2.69–26.37 -15 $\leq h \leq 15$ -21 $\leq k \leq 24$ -28 $\leq l \leq 28$ 41.483 10.815 ($R(int) = 0.0730$) 26.37 (99.3) 1.00000/0.88680 10815/27/713 0.886 R1 = 0.0389, wR2 = 0.0617 R1 = 0.0617	$3 CH_{3}CN-4H_{2}O$ 2363.19 $100(2)$ monoclinic $P_{2_{1}/c}$ $22.013(3)$ $20.350(3)$ $25.934(4)$ 90 $112.221(7)$ 90 $10755(3)$ 4 1.459 1.381 4856 $0.51 \times 0.31 \times 0.23$ $3.31-27.51$ $-28 \le h \le 28$ $-26 \le k \le 26$ $-33 \le l \le 33$ 258860 $24631 (R(int) = 0.0629)$ $27.51 (99.6)$ $0.728/0.540$ $24631/0/1378$ 1.140 $R1 = 0.0471, wR2 = 0.0982$ $R1 = 0.0713, wR2 = 0.1119$	$\begin{array}{l} 3 - C N + 0.5 \text{H}_2 \text{O} \\ 1244.14 \\ 100(2) \\ \text{triclinic} \\ P\bar{1} \\ 12.7553(11) \\ 15.0195(16) \\ 16.1388(18) \\ 78.899(8) \\ 73.727(9) \\ 77.393(8) \\ 2867.8(5) \\ 2 \\ 1.441 \\ 0.814 \\ 1282 \\ 0.51 \times 0.16 \times 0.12 \\ 3.31-27.50 \\ -16 \leq h \leq 16 \\ -19 \leq k \leq 19 \\ -20 \leq l \leq 20 \\ 70501 \\ 13137 \ (R(\text{int}) = 0.0569) \\ 27.50 \ (99.6) \\ 1.0000/0.7964 \\ 13137/3/808 \\ 1.130 \\ R1 = 0.0370, \ wR2 = 0.0628 \\ R1 = 0.0531, \ wR2 = 0.0681 \end{array}$	3 CH ₃ CN-0.5 H ₂ O 1257.19 140(2) triclinic $P\bar{1}$ 12.5901(7) 14.9590(10) 16.1459(10) 78.632(5) 73.446(5) 77.922(5) 2819.4(3) 2 1.481 1.183 1294 0.32 × 0.30 × 0.25 2.62–26.02 -15 ≤ h ≤ 15 -17 ≤ k ≤ 18 -18 ≤ l ≤ 19 21213 11062 (R(int) = 0.1069) 26.02 (99.4) 0.744/0.663 11062/9/773 0.798 R1 = 0.0635, wR2 = 0.0559 R1 = 0.1446, wR2 = 0.0668

[a] Data in common: $\lambda = 0.71073$ Å; refinement method: full-matrix least-squares on F^2 ; absorption correction: semi-empirical from equivalents.

Chem. Eur. J. 2009, 15, 10790-10802

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

A EUROPEAN JOURNAL

cluded within PLATON^[51] was then used to treat the unresolved solvent. The anisotropic refinement of the light atoms (C, N and O) was very difficult as well and some restraints were applied to their displacement parameters. 4) One of the ligands in **TbL1** showed two slightly different orientations. The split model perfectly solved this kind of disorder that dealt also with the presence of $0.5 \text{ CH}_3 \text{CN}$, very close to the *N*-methylbenzimidazole moiety of the ligand. Additional constraints (SIMU) were applied to the displacement parameters of the above-mentioned disordered ligand.

General synthesis of benzimidazole-substituted pyridine-2-carboxylic acids: The synthesis of the precursors is described in the Supporting Information. The reactions were performed under air. Substituted pyridine-2-carboxaldehyde was dissolved in formic acid (Merck, 98-100%) at RT to give a yellow solution that sometimes appeared as being cloudy due to the presence of a red solid, which was probably residual Se from the previous synthetic step. The amount of formic acid was chosen to correspond either to a minimum of 3-5 molar equivalents relative to aldehyde or to the minimum volume necessary to dissolve the aldehyde at 0°C. This solution was cooled to 0°C, stirred for 10 min and cold H₂O₂ (30 wt% aq solution) was added in excess. The solution was stirred and occasionally briefly sonicated at 0°C for 4-6 h, and kept overnight at 0°C. Addition of ice-cold water (20 mL) precipitated the product. The resulting suspension was stirred at 0°C for 1 h and filtered to give a white solid. It was washed with water, hexane and a small amount of hexane/ether (1:1) for HL401 or water and hexane in all other cases and was dried under vacuum. Further synthetic details are provided below.

Synthesis of HL4O1: The reaction was performed with **L4O1-CHO** (555 mg, 1.79 mmol), formic acid (3 mL, 3.66 g, 0.08 mol) and H₂O₂ (1.05 mL of 30wt % aq solution, contains 350 mg of H₂O₂, 10.3 mmol). Addition of water did not result in precipitation of the product. Therefore, aqueous NaHCO₃ was added dropwise to this solution until pH 2. The resulting suspension was stirred at 0°C for 2 h and filtered, and the solid was treated as described in the general procedure. White solid: 462 mg (1.35 mmol, 75%). ¹H NMR (400 MHz, [D₆]DMSO): δ =8.47 (dd, *J*=6.4, 1.2 Hz, 1H), 8.16–8.05 (m, 2H), 7.62 (d, *J*=8.8 Hz, 1H), 7.19 (d, *J*=2.4 Hz, 1H), 6.90 (dd, *J*=8.8, 2.4 Hz, 1H), 4.90 (t, *J*=7.2 Hz, 2H), 3.87 (s, 3H), 1.78 (p, *J*=7.6 Hz, 2H), 1.34 (sextet, *J*=7.6 Hz, 2H), 0.85 pm (t, *J*=7.2 Hz, 3H); CO₂H proton was not observed; elemental analysis calcd (%) for C₁₈H₁₉N₃O₃·H₂O (343.38): C 62.96, H 6.16, N 12.24; found: C 62.98, H 6.11, N 12.15.

Synthesis of HL8: The reaction was performed with **L8-CHO** (446 mg, 1.33 mmol), formic acid (5 mL, 6.1 g, 0.13 mol) and H_2O_2 (0.75 mL of 30 wt % aq solution, containing 250 mg of H_2O_2 , 7.34 mmol). White solid: 410 mg (1.17 mmol, 88 %). ¹H NMR (400 MHz, [D₆]DMSO): δ =8.51 (d, J=7.2 Hz, 1H), 8.21–8.07 (m, 2H), 7.74 (d, J=8.0 Hz, 1H), 7.68 (d, J= 8.0 Hz, 1H), 7.34 (t, J=7.2 Hz, 1H), 7.28 (t, J=7.2 Hz, 1H), 4.94 (t, J=7.6 Hz, 2H), 1.79 (p, J=7.2 Hz, 2H), 1.35–1.10 (m, 10H), 0.81 ppm (t, J=6.8 Hz, 3H); CO₂H proton was not observed; elemental analysis calcd (%) for C₂₁H₂₅N₃O₂ (351.44): C 71.77, H 7.17, N 11.96; found: C 71.82, H 7.08, N 11.94.

Synthesis of HL8F: The reaction was performed with **L8F-CHO** (501 mg, 1.42 mmol), formic acid (5 mL, 6.1 g, 0.13 mol) and H_2O_2 (0.8 mL of 30 wt % aq solution, containing 266 mg of H_2O_2 , 7.83 mmol). White solid: 471 mg (1.27 mmol, 90 %). ¹H NMR (400 MHz, [D₆]DMSO): δ =8.49 (d, J=6.4 Hz, 1H), 8.20–8.09 (m, 2H), 7.75 (dd, J=8.8, 5.2 Hz, 1H), 7.62 (dd, J=10, 2.4 Hz, 1H), 7.14 (td, J=9.6, 2.4 Hz, 1H), 4.90 (t, J=7.2 Hz, 2H), 1.81–1.70 (brp, 2H), 1.35–1.09 (m, 10H), 0.81 ppm (t, J=7.2 Hz, 3H); CO₂H proton was not observed; elemental analysis calcd (%) for C₂₁H₂₄FN₃O₂ (369.43): C 68.27, H 6.55, N 11.37; found: C 68.47, H 6.58, N 11.38.

Synthesis of HL8CI: The reaction was performed with **L8CI-CHO** (484 mg, 1.31 mmol), formic acid (5 mL, 6.1 g, 0.13 mol) and H₂O₂ (0.7 mL of 30wt% aq solution, containing 233 mg of H₂O₂, 6.85 mmol). White solid: 466 mg (1.21 mmol, 92%). ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.50 (d, *J* = 6.4 Hz, 1H), 8.22–8.11 (m, 2H), 7.87 (d, *J* = 1.6 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.30 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.93 (t, *J* = 7.2 Hz, 2H), 1.81–1.70 (brp, 2H), 1.35–1.09 (m, 10H), 0.81 ppm (t, *J* = 7.2 Hz, 3H); CO₂H proton was not observed; elemental analysis calcd

(%) for $C_{21}H_{24}ClN_{3}O_{2}$ (385.89): C 65.36, H 6.27, N 10.89; found: C 65.36, H 6.28, N 10.71.

Synthesis of HL8Br: The reaction was performed with **L8Br-CHO** (564 mg, 1.36 mmol), formic acid (4 mL, 4.9 g, 0.10 mol) and H₂O₂ (0.7 mL of 30wt% aq solution, containing 233 mg of H₂O₂, 6.85 mmol). White solid: 503 mg (1.17 mmol, 86%). ¹H NMR (400 MHz, [D₆]DMSO): δ =8.51 (dd, *J*=7.2, 2.0 Hz, 1H), 8.21–8.12 (m, 2H), 8.01 (d, *J*=1.2 Hz, 1H), 7.70 (d, *J*=8.8 Hz, 1H), 7.42 (dd, *J*=8.4, 1.6 Hz, 1H), 4.93 (t, *J*=7.2 Hz, 2H), 1.8–1.7 (brm, 2H), 1.34–1.08 (brm, 10H), 0.81 ppm (t, *J*=7.2 Hz, 3H); CO₂H proton was not observed; elemental analysis calcd (%) for C₂₁H₂₄BrN₃O₂ (430.34): C 58.61, H 5.62, N 9.76; found: C 58.96, H 5.67, N 9.68.

Synthesis of HL8Me: The reaction was performed with **L8Me**-CHO (583 mg, 1.66 mmol), formic acid (4 mL, 4.9 g, 0.11 mol) and H₂O₂ (0.85 mL of 30 wt % aq solution, containing 283 mg of H₂O₂, 8.32 mmol). White solid: 568 mg (1.45 mmol, 87%). ¹H NMR (400 MHz, [D₆]acetone): δ =8.63 (dd, *J*=6.8, 1.6 Hz, 1H), 8.23–8.14 (m, 2H), 8.12 (s, 0.5H; HCO₂H), 7.61 (d, *J*=8.0 Hz, 1H), 7.45 (s, 1H), 7.13 (d, *J*= 8.0 Hz, 1H), 4.96 (t, *J*=7.6 Hz, 2H), 2.51 (s, 3H), 2.0–1.85 (m, 2H), 1.48–1.17 (m, 10 H), 0.84 ppm (t, *J*=6.8 Hz, 3H); CO₂H proton not observed; the presence of HCO₂H has been confirmed and quantified by ¹H NMR in [D₆]acetone: δ =8.12 ppm (s); elemental analysis calcd (%) for C₂₂H₂₇N₃O₂·0.5 HCO₂H·0.25 H₂O (392.99): C 68.77, H 7.31, N 10.69; found: C 68.76, H 7.36, N 10.72.

Synthesis of HL8O8: The reaction was performed with **L8O8**-**CHO** (732 mg, 1.58 mmol), formic acid (5 mL, 6.1 g, 0.13 mol) and H_2O_2 (0.81 mL of 30 wt% aq solution, containing 270 mg of H_2O_2 , 7.93 mmol). The product separates as sticky pink oil that solidifies on stirring and sonication. Pale pink solid: 601 mg (1.25 mmol, 79%). ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.45 (dd, J = 7.6, 1.2 Hz, 1H), 8.15–8.05 (m, 2H), 7.60 (d, J = 8.8 Hz, 1H), 7.16 (d, J = 2.0 Hz, 1H), 6.89 (dd, J = 8.8, 2.0 Hz, 1H), 4.90 (t, J = 7.2 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H), 1.81–1.69 (m, 4H), 1.5–1.4 (m, 2H) 1.4–1.1 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H), 0.81 ppm (t, J = 7.2 Hz, 3H); CO₂H proton not observed; elemental analysis calcd (%) for C₂₉H₄₁N₃O₃ (479.65): C 72.62, H 8.62, N 8.76; found: C 72.23, H 8.85, N 8.74.

Synthesis of lanthanide complexes: The reactions were performed under air using a 3:3:1 molar ratio of the ligand, NaOH and LnCl₃·nH₂O. The ligand was suspended in hot ethanol (70-80 °C, 5 mL; the same temperature was kept throughout the reaction), followed by addition of NaOH dissolved in water (0.5-1 mL, used as a stock solution with approx. 100 mg of NaOH per 10 mL of water) and stirring for 10 min to give colourless solution. A solution of LnCl₃·nH₂O (n=6 or 7; 99.9%, Aldrich) in water (2 mL) was added dropwise over 5 min and stirred for a further 5 min. A white precipitate of the complex may form on addition. An additional volume of water (specified below) was added to complete precipitation of the complex. The resulting suspension was stirred for 10 min at 70-80°C, cooled to 40-50°C and filtered while warm. The product was washed with ethanol/water (1:1) followed by ether for LnL1, LnL4Me and LnL4O1 or with ethanol/water (1:1) followed by hexane in all other cases and was dried under vacuum at room temperature. The complexes are white solids that are soluble in DMSO, boiling ethanol and are insoluble in hexane and water; the complexes with N-octyl groups are also soluble in CH₂Cl₂. ¹H NMR spectroscopy of the diamagnetic lanthanum complexes in CD₂Cl₂ at 10⁻³ M was not informative, as all resonances were very broad at room temperature. Further synthetic details and analytical data for Eu complexes are provided below, whereas data for the La and Tb complexes are given in the Supporting Information.

Synthesis of [Eu(L8)₃]: The complex was precipitated with water (5 mL). Yield: 45 mg (0.037 mmol, 80%) from HL8 (50 mg, 0.142 mmol), NaOH (5.69 mg, 0.142 mmol) and EuCl₃·6H₂O (17.4 mg, 0.047 mmol); elemental analysis calcd (%) for $C_{63}H_{72}EuN_9O_6$ (1203.27): C 62.88, H 6.03, N 10.48; found: C 63.03, H 6.08, N 10.27.

Synthesis of [Eu(L8F)₃]: The complex was precipitated with water (2 mL). Yield: 50 mg (0.040 mmol, 88%) from **HL8F** (50 mg, 0.135 mmol), NaOH (5.41 mg, 0.135 mmol) and EuCl₃•6 H₂O (16.5 mg, 0.045 mmol); elemental analysis calcd (%) for $C_{63}H_{69}EuF_3N_9O_6$ (1257.24): C 60.19, H 5.53; N 10.03; found: C 60.32, H 5.53, N 10.04.

Synthesis of [Eu(L8Cl)₃]: The complex was precipitated with water (2 mL). Yield: 43 mg (0.033 mmol, 77%) from **HL8Cl** (50 mg, 0.130 mmol), NaOH (5.18 mg, 0.130 mmol) and EuCl₃·6H₂O (15.8 mg, 0.043 mmol); elemental analysis calcd (%) for $C_{63}H_{69}Cl_3EuN_9O_6$ (1306.60): C 57.91, H 5.32, N 9.65; found: C 58.03, H 5.32, N 9.52.

Synthesis of [Eu(L8Br)₃]: The complex was precipitated with water (2 mL). Yield: 42 mg (0.029 mmol, 75%) from **HL8Br** (50 mg, 0.116 mmol), NaOH (4.65 mg, 0.116 mmol) and EuCl₃·6H₂O (14.2 mg, 0.039 mmol); elemental analysis calcd (%) for $C_{63}H_{73}Br_3EuN_9O_8$ (1439.95): C 52.55, H 4.83, N 8.75; found: C 52.66, H 4.87, N 8.68.

Synthesis of [Eu(L8Me)₃]-0.5H₂O: The complex was precipitated with water (5 mL). Yield: 38 mg (0.030 mmol, 72%) from **HL8Me** (50 mg, 0.127 mmol), NaOH (5.09 mg, 0.127 mmol) and EuCl₃·6H₂O (15.54 mg, 0.042 mmol); elemental analysis calcd (%) for $C_{66}H_{78}EuN_9O_6$ ·0.5H₂O (1254.35): C 63.20, H 6.35, N 10.05; found: C 63.14, H 6.39, N 9.87.

Synthesis of [Eu(L808)₃]-1.5H₂O: The complex was precipitated with water (1 mL). Yield: 40 mg (0.025 mmol, 71%) from **HL808** (50 mg, 0.104 mmol), NaOH (4.17 mg, 0.104 mmol) and EuCl₃-6H₂O (12.73 mg, 0.035 mmol); elemental analysis calcd (%) for $C_{87}H_{120}EuN_9O_9$ ·1.5H₂O (1614.93): C 64.70, H 7.68, N 7.81; found: C 64.72, H 7.69, N 7.71.

Synthesis of $[Eu(L401)_3]$ -H₂O: The complex was precipitated with water (2 mL). Yield: 45 mg (0.039 mmol, 82%) from HL401-H₂O (50 mg, 0.146 mmol), NaOH (5.82 mg, 0.146 mmol) and EuCl₃-6H₂O (17.7 mg, 0.048 mmol); elemental analysis calcd (%) for C₅₄H₅₄EuN₉O₃-H₂O (1143.04): C 56.74, H 4.94, N 11.03; found: C 56.49, H 4.93, N 10.90.

Crystallographic data: CCDC-736923 $[La(L1)_3]$, 736925 $[Eu(L1)_3]$, 736925 $[Tb(L1)_3]$, 736926 $[La(L4Me)_3]$, 736927 $[Eu(L4Me)_3]$, 736928 $[Tb-(L4Me)_3]$, 736929 $[La(L4O1)_3]$ and 736930 $[Eu(L4O1)_3]$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

This research is supported by a grant from the Swiss National Science Foundation (grant no. 20020 119866). We would like to acknowledge Frédéric Gumy (EPFL) for performing photophysical measurements on $[Eu(L401)_3]$ ·H₂O and Dr. Rosendo Sanjines (EPFL) for measuring the thickness of the thin films. JCB thanks the WCU (World Class University) program from the National Science Foundation of Korea (Ministry of Education, Science, and Technology) for grant R31-10035.

- [1] A. E. Demarçais, C. R. Acad. Sci. Paris 1901, 132, 1484-1486.
- [2] R. M. Supkowski, W. D. Horrocks Jr., Inorg. Chim. Acta 2002, 340, 44–48.
- [3] A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, M. Woods, *J. Chem. Soc. Perkin Trans.* 2 1999, 493–503.
- [4] J.-C. G. Bünzli, S. Petoud, E. Moret, Spectrosc. Lett. 1999, 32, 155– 163.
- [5] D. Ananias, M. Kostova, F. A. A. Paz, A. N. C. Neto, R. T. De Moura, O. L. Malta, L. D. Carlos, J. Rocha, J. Am. Chem. Soc. 2009, 131, 8620–8626.
- [6] J.-C. G. Bünzli in Lanthanide Probes in Life, Chemical and Earth Sciences. Theory and Practice (Eds.: J.-C. G. Bünzli, G. R. Choppin), Elsevier, Amsterdam, 1989, Chapter 7, pp. 219–293.
- [7] "Rationalization of crystal field parameterization": C. Görller-Walrand, K. Binnemans in *Handbook on the Physics and Chemistry of Rare Earths, Vol. 23* (Eds.: K. A. Gschneidner, Jr., L. Eyring), Elsevier, Amsterdam, **1996**, Chapter 155, pp. 121–283.
- [8] T. Jüstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 1998, 110, 3250–3271; Angew. Chem. Int. Ed. 1998, 37, 3084–3103.
- [9] G. Urbain, Chem. Rev. 1924, 1, 143-185.

- [11] S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2009, DOI: 10.1039/ b905604c.
- [12] A. de Bettencourt-Dias, Dalton Trans. 2007, 2229-2241.
- [13] D. F. Reardon, US Patent 2008305243A1 20081211, 2008.
- [14] S. Lian, C. Rong, D. Yin, S. Liu, J. Phys. Chem. C 2009, 113, 6298– 6302.
- [15] T. Gunnlaugsson, G. A. Leonard, Chem. Commun. 2005, 3114-3131.
- [16] I. Hemmilä, V. Laitala, J. Fluoresc. 2005, 15, 529-542.
- [17] J.-C. G. Bünzli, Chem. Lett. 2009, 38, 104-109.
- [18] "The Absorption and Fluorescence Spectra of Rare Earth Ions in Solution": W. T. Carnall in *Handbook on the Physics and Chemistry* of Rare Earths, Vol. 3 (Eds.: K. A. Gschneidner, Jr, L. Eyring), North Holland, Amsterdam, **1979**, Chapter 24, pp. 172–208.
- [19] G. F. de Sá, O. L. Malta, C. D. Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, E. F. da Silva, *Coord. Chem. Rev.* 2000, 196, 165– 195.
- [20] N. M. Shavaleev, R. Scopelliti, F. Gumy, J.-C. G. Bünzli, *Inorg. Chem.* 2009, 48, 5611–5613.
- [21] G. D. R. Napier, J. D. Neilson, T. M. Sheperd, Chem. Phys. Lett. 1975, 31, 328–330.
- [22] L. N. Puntus, K. A. Lyssenko, I. Pekareva, J.-C. G. Bünzli, J. Phys. Chem. B 2009, 113, 9265–9277.
- [23] S. Sato, M. Wada, Bull. Chem. Soc. Jpn. 1970, 43, 1955-1962.
- [24] "Rare Earth β-Diketonate Complexes: Functionalities and Applications": K. Binnemans in *Handbook on the Physics and Chemistry of Rare Earths, Vol. 35* (Eds.: K. A. Gschneidner, Jr, J.-C. G. Bünzli, V. K. Pecharsky), Elsevier, Amsterdam, **2005**, Chapter 225, pp. 107– 272.
- [25] R. Ziessel, S. Diring, P. Kadjane, L. J. Charbonnière, P. Retailleau, C. Philouze, *Chem. Asian J.* 2007, 2, 975–982.
- [26] C. R. De Silva, J. R. Maeyer, A. Dawson, Z. P. Zheng, *Polyhedron* 2007, 26, 1229–1238.
- [27] K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, Y. Wada, J. Phys. Chem. A 2007, 111, 3029–3037.
- [28] C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Y. F. Qiao, B. S. Zou, L. L. Gui, *Angew. Chem.* **2004**, *116*, 5120–5123; *Angew. Chem. Int. Ed.* **2004**, *43*, 5010–5013.
- [29] A. D'Aleo, A. Picot, A. Beeby, J. A. Gareth Williams, B. Le Guennic, C. Andraud, O. Maury, *Inorg. Chem.* 2008, 47, 10258–10268.
- [30] G. S. Kottas, M. Mehlstaubl, R. Froehlich, L. De Cola, *Eur. J. Inorg. Chem.* 2007, 3465–3468.
- [31] G. Zucchi, O. Maury, P. Thuery, F. Gumy, J.-C. G. Bünzli, M. Ephritikhine, *Chem. Eur. J.* 2009, DOI: 10.1002/chem.200901517.
- [32] N. M. Shavaleev, R. Scopelliti, F. Gumy, J.-C. G. Bünzli, *Inorg. Chem.* 2009, 48, 5611–5613.
- [33] C. Piguet, B. Bocquet, G. Hopfgartner, *Helv. Chim. Acta* **1994**, 77, 931–942.
- [34] N. André, T. B. Jensen, R. Scopelliti, D. Imbert, M. Elhabiri, G. Hopfgartner, C. Piguet, J.-C. G. Bünzli, *Inorg. Chem.* 2004, 43, 515– 529.
- [35] "Self-Assembled Lanthanide Helicates: From Basic Thermodynamics to Applications": C. Piguet, J.-C. G. Bünzli in *Handbook on the Physics and Chemistry of Rare Earths, Vol. 40* (Eds.: K. A. Gschneidner, Jr, J.-C. G. Bünzli, V. K. Pecharsky), Elsevier, Amsterdam, **2010**, Chapter 247, pp. 301–553.
- [36] N. M. Shavaleev, R. Scopelliti, F. Gumy, J.-C. G. Bünzli, *Inorg. Chem.* 2009, 48, 6178–6191.
- [37] D. Yang, D. Fokas, J. Li, L. Yu, C. Baldino, Synthesis 2005, 47-56.
- [38] R. Dodd, M. Le Hyaric, Synthesis 1993, 295-297.
- [39] L. C. Thompson, Complexes in Handbook on the Physics and Chemistry of Rare Earths, Vol. 3 (Eds.: K. A. Gschneidner, Jr, L. Eyring), North Holland, Amsterdam, 1979, Chapter 25, pp. 209–297.
- [40] I. D. Brown, Acta Crystallogr. Sect. A 1992, 48, 553-572.
- [41] A. Trzesowska, R. Kruszynski, T. J. Bartczak, Acta Crystallogr. Sect. A 2004, 60, 174–178.
- [42] A. Trzesowska, R. Kruszynski, T. J. Bartczak, Acta Crystallogr. Sect. A 2005, 61, 429–434.

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

FULL PAPER

^[10] J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048–1077.

CHEMISTRY

A EUROPEAN JOURNAL

- [43] J.-C. G. Bünzli, S. V. Eliseeva in Springer Series on Fluorescence, Vol. 7, Lanthanide Spectroscopy, Materials, and Bio-applications (Eds.: P. Hänninen, H. Härmä), Springer, Berlin, 2010, Chapter 2.
- [44] M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J.-C. Rodriguez-Ubis, J. Kankare, J. Lumin. 1997, 75, 149–169.
- [45] J.-C. G. Bünzli, B. Klein, D. Wessner, N. W. Alcock, *Inorg. Chim. Acta* 1982, 59, 269–274.
- [46] M. H. V. Werts, R. T. F. Jukes, J. W. Verhoeven, Phys. Chem. Chem. Phys. 2002, 4, 1542–1548.
- [47] CrysAlis PRO, Oxford Diffraction Ltd., Yarnton, Oxfordshire, 2009.
- [48] A. J. M. Duisenberg, L. M. J. Kroon-Batenburg, A. M. M. Schreurs, J. Appl. Crystallogr. 2003, 36, 220–229.
- [49] R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33–38.
- [50] G. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.
- [51] A. L. Spek, PLATON. A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, 2008.

Received: July 19, 2009 Published online: September 16, 2009