

Journal of Photochemistry and Photobiology A: Chemistry 136 (2000) 203-208

Journal of Photochemistry Photobiology A:Chemistry

www.elsevier.nl/locate/jphotochem

Water enhances photoluminescence intensity of europium (III), terbium (III) and samarium (III) tris-β-diketonates in toluene solutions and chemiluminescence intensity of europium (III) and samarium (III) tris-β-diketonates in the reaction with dioxetane

A.I. Voloshin*, N.M. Shavaleev, V.P. Kazakov

Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russia

Received 10 April 2000; accepted 17 July 2000

Abstract

Water enhances photoluminescence quantum yield of concentrated $>10^{-4}$ M toluene solutions of samarium, terbium and europium tris- β -diketonates (Ln(L)₃·nH₂O) by shifting the dimer–monomer equilibrium of the chelate and by decreasing the nonradative losses through the ligand-to-metal charge-transfer state. Water also alters the chemiluminescence intensity of Ln(L)₃·nH₂O excited from decomposition of a dioxetane by changing both the chemiexcitation mechanism and the photoluminescence quantum yield of Ln³⁺. Water quenches chemiluminescence of Tb³⁺, Dy³⁺, Yb³⁺, Nd³⁺ and of coordination-unsaturated Eu³⁺ β -diketonates, and enhances chemiluminescence of coordination-saturated Eu³⁺ and Sm³⁺ chelates. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Luminescence; Chemiluminescence; β-Diketonate complexes; Lanthanide; Terbium; Samarium; Europium; Dioxetane

1. Introduction

Photo- [1–14], electro- [15–17], thermo- [18], radio- [19], tribo- [20–22], electrochemi- [23] and chemiluminescence [24–28] of lanthanide β -diketonates is being extensively studied in order to improve the Ln³⁺ luminescence occurs by the exchange of the Ln³⁺ electronic energy to the vibrations of proximate bonds [1–14,29–31] and water molecules possessing high-energy OH-vibrations ($\nu = 3700 \text{ cm}^{-1}$) are the most efficient quenchers.

However, recently we have observed that photoluminescence of concentrated (>10⁻⁴ M) toluene solutions of Eu³⁺, Sm³⁺ and Tb³⁺ tris- β -diketonates (Ln(L)₃·*n*H₂O) is enhanced by water [32–34]. In concentrated solutions the chelate is partially dimerized (Eq. (1)), and the luminescence quantum yield (ϕ) of dimer is significantly lower than for monomer due to a quenching in the ligand and cross-relaxation of Ln³⁺. Addition of water shifts equilibrium (1) to the

* Corresponding author. Fax: +7-347-2-356066.

monomer and enhances Ln^{3+} luminescence quantum yield and lifetime [34]. However, in diluted $< 10^{-4}$ M anhydrous toluene solutions the chelate already exists as monomer and addition of water quenches its luminescence.

$$2\mathrm{Ln}(\mathrm{L})_3 \cdot n\mathrm{H}_2\mathrm{O} \rightleftharpoons [\mathrm{Ln}(\mathrm{L})_3 \cdot n\mathrm{H}_2\mathrm{O}]_2 \tag{1}$$

Addition of water quenches luminescence of Dy^{3+} , Nd^{3+} and Yb^{3+} chelates due to a high > 2 × 10⁴ s⁻¹ rate constant of deactivation of these ions by OH-group (k_{OH}), while water enhances luminescence of Eu³⁺, Sm³⁺ and Tb³⁺ since k_{OH} for these ions is < 2 × 10⁴ s⁻¹ [30].

Lanthanide chelates (β -diketonates [24–28], polyaminocarboxylates [24,35], etc.) are used to enhance emission intensity of various chemiluminescent reactions and it was of interest to study the influence of water on the chemiluminescence of Ln³⁺. Herein, we have compared the influence of water on the photoluminescence intensity of Sm³⁺, Eu³⁺, Dy³⁺, Tb³⁺, Nd³⁺ and Yb³⁺ tris- β -diketonates in toluene and on their chemiluminescence excited from decomposition of adamantylideneadamantane-1,2-dioxetane (AAD) [25–28].

E-mail address: chemlum@ufanet.ru (A.I. Voloshin).

2. Experimental

Synthesis of the chelates [25–26] and AAD [36] was described elsewhere. Toluene was dried and distilled over Na; H₂O was bidistilled.

Photoluminescence of Ln^{3+} was collected at 180° relative to excitation beam, in optically dense solutions. Water was added by 1 µl microsyringe to 2 ml of $Ln(L)_3 \cdot nH_2O$ toluene solution at 85°C in quartz cell and dissolved until transparent homogeneous solutions were obtained. Concentration of $[H_2O] = 0.056$ M corresponds to the 2 µl of H₂O in 2 ml of toluene.

Chemiluminescence was studied on home-built equipment [25–26]. Water was added by microsyringe to 2 ml of $Ln(L)_3 \cdot nH_2O$ and AAD toluene solution at 85°C and dissolved. The conversion of AAD during experiment was <0.5%. Uncorrected CL spectra (Figs. 3 and 4) were recorded in toluene at 95°C with $[Ln(L)_3 \cdot nH_2O] = 2 \times 10^{-2} \text{ M}$ and $[AAD] = 5 \times 10^{-3} \text{ M}$.

For more experimental details see notes to the Table 1.

3. Results and discussion

3.1. Photoluminescence of $Ln^{3+}\beta$ -diketonates

Absorption spectra of lanthanide β -diketonates consist of intense broad ligand bands in UV and weak ff-absorption lines of Ln³⁺ ion (Fig. 1). Excitation of chelate to the ligand or ion results in the ff-luminescence of Ln³⁺. In the former case the Ln³⁺ levels are populated by intramolecular energy transfer: L_S^{*} \rightarrow L_T^{*} \rightarrow Ln^{3+*}, where L_S^{*} and L_T^{*} are the first excited singlet and the triplet ligand states, respectively [1–14].

Photoluminescence of Sm³⁺, Tb³⁺, Dy³⁺, Nd³⁺ and Yb³⁺ β -diketonates is observed from resonant level only. Only for Eu³⁺ the luminescence arises from two excited levels, resonant ⁵D₀ and upper-lying ⁵D₁ level (Fig. 2).

Table 1

Photoluminescence quantum yields (ϕ) at 25 and 85°C, relative chemiluminescence intensities (ϕ_{CL}) and influence of water on the photoluminescence and chemiluminescence of Ln³⁺ β -diketonates in toluene solutions

	Quantum yields (%) ^a		$\phi(\mathrm{H}_2\mathrm{O})/\phi^{\mathrm{c}}$ at $85^{\circ}\mathrm{C}$	$\phi_{\rm CL}{}^{\rm d}$ at $85^{\circ}{ m C}$	$\phi_{\rm CL}({\rm H_2O})/\phi_{\rm CL}{}^{\rm e}$ at 85°C
	φ (25°C)	φ (85°C)			
AAD	_	_	_	_	1.0
Sm(BTFA)3·2H2O	0.05	0.03	2.4	100	1.1
Sm(TTA)3·2H2O	0.06	0.03	2.3	89	1.2
Eu(BTFA)3·2H2O	0.7	0.02	4.3	1	1.8
Eu(TTA)3·2H2O	0.9	0.008	4.3	1	1.6
Eu(FOD) ₃	1.2	0.06	11	100	0.3
Eu(DPM) ₃	0.1	0.03	21	1	0.5
Tb(AA) ₃ ·3H ₂ O	15	8.8	1.5	100	0.7
Tb(BTFA)3·2H2O	0.07	0.008	1.6	4	0.5
$Tb(TTA)_3 \cdot 2H_2O$	< 0.001	-	-	2	0.5
Dy(DPM) ₃	0.27	0.06	0.3	100	0.2
Dy(AA) ₃ ·3H ₂ O	0.005	-	_	1	< 0.8
Dy(BTFA)3·2H2O	< 0.001	-	_	<1	<0.7
Dy(TTA) ₃ ·2H ₂ O	< 0.001	-	-	<1	<1
Yb(TTA)3·2H2O	100 ^b	_	0.8	72	0.8
Yb(BTFA)3·2H2O	80 ^b	_	0.8	100	0.7
Nd(BTFA)3·2H2O	31 ^b	43	0.7		0.5

^a Photoluminescence quantum yields of 10^{-3} M chelate solutions, determined as described in [34].

^b Only relative photoluminescence intensities are given for Yb^{3+} and Nd^{3+} that can be compared between each other [25].

^c Influence of water on the photoluminescence quantum yield of Ln^{3+} . $[Ln(L)_3 \cdot nH_2O] = 0.02 \text{ M}$, $[H_2O] = 0.056 \text{ M}$. Given is the ratio of photoluminescence quantum yield in the presence of water — $\phi(H_2O)$ to that in anhydrous solution — ϕ . Photoluminescence spectra of Ln^{3+} (except Eu^{3+}) are not altered by water and emission intensity was measured by the height of the most intense peak. For Eu^{3+} the change of photoluminescence intensity of ${}^5D_0 \rightarrow {}^7F_2$ transition at 610 nm was measured.

^d Relative chemiluminescence intensities of Ln^{3+} . [AAD] = 10^{-3} M, [Ln(L)₃ · nH_2O] = 0.02 M. CL emission intensity was measured by selecting the required spectral range by cut-off filters. Relative CL intensities can be compared only between different chelates of the same Ln^{3+} ion.

^e Influence of water on the chemiluminescence intensity of Ln³⁺. [AAD] = 5×10^{-4} M, [Ln(L)₃ · *n*H₂O] = 0.02 M, [H₂O] = 0.056 M. Given is the ratio of chemiluminescence intensity in the presence of water — $\phi_{CL}(H_2O)$ to that in anhydrous solution — ϕ_{CL} .

Fig. 1. Absorption spectra of 0.02 M solutions of Eu(DPM)₃ and Pr(DPM)₃ in anhydrous toluene and in toluene with $[H_2O] = 0.056$ M. Weak line-like bands are ff-absorptions of Ln³⁺ ion. LMCT state appears in the absorption of Eu(DPM)₃ as a long wavelength shoulder that is absent in the Pr(DPM)₃ spectrum. Addition of water blue-shifts LMCT absorption of Eu(DPM)₃ to a larger extent than the ligand absorption of Pr(DPM)₃.

Luminescence quantum yields of 10^{-3} M toluene solutions of Ln(L)₃·*n*H₂O are listed in Table 1. At higher [Ln³⁺] the concentration quenching of Ln³⁺ luminescence is observed caused by dimerization (Eq. (1)) [34].

Fig. 2. Photoluminescence spectrum of Eu(FOD)₃ (emission slit: 5 nm). Luminescence of Eu³⁺ is due to a transitions from resonant ⁵D₀ and upper-lying ⁵D₁ level to ⁷F_J levels. The band at 540 nm is due to ⁵D₁ \rightarrow ⁷F₀ transition, the band at 610 nm is ⁵D₀ \rightarrow ⁷F₂ transition. Influence of temperature (upper and middle spectra) and addition of water (middle and lower spectra) on the ⁵D₁-luminescence of Eu³⁺. The concentration of H₂O after addition was 0.056 M. Intensities cannot be compared. Spectra were recorded on Hitachi MPF-4 spectrofluorimeter.

Temperature rise in the 25–85°C range lowers the ϕ of all Ln³⁺ chelates, except Nd³⁺ for which 30% enhancement of ϕ is observed. For Eu³⁺ the contribution of ⁵D₁-emission to the total intensity increases at higher temperatures (Fig. 2) [5]. This indicates that ⁵D₁ level is thermally populated from ⁵D₀ level [37] ($\Delta E \sim 1750 \text{ cm}^{-1}$).

3.2. Chemiluminescence of $Ln^{3+}\beta$ -diketonates

The reaction of AAD decomposition giving adamantanone in lowest excited singlet (Ad= O_S^*) and triplet (Ad= O_T^*) states (Eq. (2)) is practically a stationary source of excited species, since the rate constant k_1 in Eq. (2) is $<10^{-6} s^{-1}$ up to 100° C [36]. Chemiluminescence of AAD is due to the fluorescence of Ad = O ($\lambda_{max} = 420$ nm).

$$AAD \xrightarrow{k_1} 1.83Ad = O + 0.15Ad = O_T^* + 0.02Ad = O_S^*,$$

$$Ad = O_S^* \rightarrow Ad = O + h\nu, \quad \lambda_{max} = 420 \text{ nm}$$
(2)

Emission bands of Ln^{3+} appear in the CL spectrum of AAD in the presence of the lanthanide β -diketonates studied. Chemiluminescence spectra of Ln^{3+} are given in Figs. 3 and 4, and relative chemiluminescence intensities (ϕ_{CL}) in Table 1. For all Ln^{3+} chelates, except Eu^{3+} , the photoluminescence and chemiluminescence spectra coincide. For Eu^{3+} , e.g. for $Eu(FOD)_3$ the chemiluminescence is observed from 5D_0 and 5D_1 levels and 5D_1 -chemiluminescence at 540 nm is much more efficient than photoluminescence

Fig. 3. Chemiluminescence spectra of Sm(BTFA)₃·2H₂O, Dy(DPM)₃ and Tb(AA)₃·3H₂O. Emission of Sm³⁺ is due to transitions from resonant ⁴G_{5/2} to ⁶H_J levels; Dy³⁺ — due to transitions ⁴F_{9/2} \rightarrow ⁶ H_J; Tb³⁺ — due to transitions ⁵D₄ \rightarrow ⁷ F_J. In all cases photoluminescence and chemiluminescence spectra coincide.

Fig. 4. Chemiluminescence spectra of Eu(FOD)₃ in anhydrous toluene and in toluene with $[H_2O] = 0.056 \text{ M}$. Chemiluminescence and photoluminescence (Fig. 2) spectra of Eu³⁺ do not coincide, since in the former the ⁵D₁-emission at 540 nm is more efficient.

(compare Figs. 2 and 4) [28]. The CL of Nd^{3+} and Yb^{3+} was studied in [25,26].

3.3. Chemiluminescence intensity and chemiexcitation mechanisms of $Ln^{3+}\beta$ -diketonates

Chemiexcitation of Ln^{3+} in the system studied might occur by intermolecular and intracomplex energy transfer from Ad=O* [25,26].

Intermolecular energy transfer. Includes singlet–singlet energy transfer from $Ad=O_S^*$ to the ligand singlet state (Eq. (3)). This process was shown [25,26] to be possible only for TTA and BTFA chelates of Ln^{3+} since their L_S^* states are lower in energy than $Ad=O_S^*$ (Fig. 5)

$$Ad=O_{S}^{*} \rightarrow L_{S}^{*} \rightarrow L_{T}^{*} \rightarrow Ln^{3+*}$$
(for BTFA and TTA chelates) (3)

Also, all the chelates can be excited by exothermic triplet–triplet energy transfer from $Ad=O_T^*$ to the ligand triplet (Fig. 5) and further to the Ln^{3+} levels (Eq. (4)) [38]

Fig. 5. Energy levels of Ad=O and β -diketonate ligands of Ln(L)₃.*n*H₂O [25]. Energy of DPM_T* is assumed to be equal to AA_T*. Energy of LMCT state Eu(DPM)₃ is taken from [12].

$$Ad=O_T^* \rightarrow L_T^* \rightarrow Ln^{3+*}$$
 (for all chelates studied) (4)

It should be noted that both chelate monomers and dimers may act as energy acceptors in Eqs. (3) and (4).

Intracomplex energy transfer to the excited levels of Ln^{3+} . The title mechanism is realized by decomposition of AAD·Ln(L)₃ complex (Eq. (5))

$$AAD + Ln(L)_{3} \stackrel{K}{\leftrightarrow} AAD \cdot Ln(L)_{3} \stackrel{k_{2}}{\rightarrow} \phi_{Ln}^{*}[Ln(L)_{3}^{*} \cdot 2Ad=0]$$
$$+ (1 - \phi_{Ln}^{*})[Ln(L)_{3} \cdot 2Ad=0]$$
(5)

The Ln^{3+} in the complex is coordinated by AAD oxygens, and catalyzes its decomposition. The rate constant of AAD·Ln(L)₃ decay — k_2 in Eq. (5) is usually 10^2-10^3 times higher than k_1 in Eq. (2) [27]. Since the CL intensity is proportional to the rate of chemiluminescent reaction, one may expect that Ln^{3+} emission would be higher for chelate that catalyzes AAD decomposition according to Eq. (5), than for chelate that acts only as an energy acceptor of Ad=O* in Eqs. (3) and (4).

Formation of AAD·Ln(L)₃ and intracomplex chemiexcitation is probable for coordination-unsaturated DPM and FOD chelates [25,27], where only six out of eight to nine coordination sites of Ln³⁺ are occupied. Intracomplex excitation is less probable for coordination-saturated hydrated TTA, BTFA and AA chelates, however, even their chemiluminescence can be largely determined by the reaction (5) [25], due to formation of trace amounts of AAD·Ln(L)₃ and high rate constant k_2 .

In fact, the highest chemiluminescence emission is observed for the chelates that catalyze AAD decomposition, e.g. Eu(FOD)₃ and Dy(DPM)₃. CL emission of Eu(FOD)₃ is 100 times higher than for TTA and BTFA chelates of Eu³⁺ (Table 1). Actually, intracomplex excitation (Eq. (5)) is the reason for the unusually efficient CL emission of Eu³⁺ from ⁵D₁ level (Figs. 2 and 4) [28]. ϕ_{CL} for Eu(DPM)₃ is lower than for Eu(FOD)₃ since the former inefficiently catalyzes AAD decomposition [27].

High ϕ_{CL} may also be observed for coordinationsaturated chelates provided that they possess high ϕ , e.g. Tb(AA)₃·3H₂O (Table 1).

3.4. Enhancement of photoluminescence intensity of Eu^{3+} , Tb^{3+} and $Sm^{3+} \beta$ -diketonates by water

Addition of water ([H₂O] = 0.056 M) to the 0.02 M toluene solutions of chelates enhances ϕ of Eu³⁺, Sm³⁺ and Tb³⁺ and quenches ϕ of Dy³⁺, Nd³⁺, Yb³⁺ (Table 1). The ϕ (H₂O)/ ϕ ratio for a given ligand decreases in the order Eu³⁺ > Sm³⁺ > Tb³⁺.

Nonradiative deactivation for $\text{Eu}^{3+}\beta$ -diketonates may occur by ligand-to-metal charge transfer (LMCT), especially at elevated temperatures [5,11,12,14]. LMCT-absorption is observed as a long wavelength shoulder in the Eu(DPM)₃ absorption spectrum [12]. This shoulder is absent in the $Ln(DPM)_3$ spectra, where $Ln = Pr^{3+}$, Dy^{3+} , (Fig. 1). Introduction of electron-accepting groups to the ligand (e.g. fluorine atoms) increases the energy of LMCT state and enhances Eu^{3+} luminescence efficiency [14].

Probably, water enhances the ϕ of Eu³⁺ chelates not only by shifting the equilibrium (1), but also by increasing the energy of LMCT state. Actually, addition of water blue-shifts LMCT-absorption of Eu(DPM)₃, and this shift is larger than the one observed for ligand-centered absorption of Pr(DPM)₃ (Fig. 1).

The photoluminescence spectrum of Eu³⁺ is changed by water, the ⁵D₀-emission intensity is significantly enhanced relative to ⁵D₁-emission (Fig. 2). This is probably caused by quenching of ⁵D₁-level through energy exchange of ⁵D₁ \rightarrow ⁵D₀ transition to the O–H vibrations.

3.5. Enhancement of chemiluminescence intensity of BTFA and TTA chelates of Eu^{3+} and Sm^{3+} by water

Since the water changes the ϕ of lanthanide β -diketonates it should also influence their chemiluminescence emission. Water does not change the CL intensity of AAD, while it significantly alters emission of Ln³⁺ in AAD-Ln(L)₃·*n*H₂O system (Table 1, Fig. 6).

The influence of water on photoluminescence and chemiluminescence of Ln^{3+} were studied in identical conditions, i.e. at 85°C at $[Ln^{3+}] = 0.02$ M and with added $[H_2O] = 0.056$ M and the results for $\phi(H_2O)/\phi$ and $\phi_{CL}(H_2O)/\phi_{CL}$ entries in Table 1 can be compared.

If the Ln^{3+} chemiexcitation occured *only* by AAD·Ln(L)₃ decomposition, then the addition of water that expels AAD by reaction (6) would decrease AAD·Ln(L)₃ concentration and quench Ln^{3+} chemiluminescence, independent of the change of ϕ

$$AAD \cdot Ln(L)_{3} + H_{2}O \text{ (excess)}$$

$$\rightarrow Ln(L)_{3} \cdot nH_{2}O + AAD$$
(6)

Fig. 6. Influence of water on the chemiluminescence intensity of $Ln^{3+}\,\beta\text{-diketonates}$ in toluene.

However, if the Ln^{3+} chemiexcitation occured *only* by intermolecular energy transfer (Eqs. (3) and (4)), then the change of ϕ_{CL} and ϕ by water would be identical.

Coordination-unsaturated FOD and DPM chelates:

Intracomplex chemiexcitation largely determines the CL intensity of the title chelates. Water quenches chemiluminescence of FOD and DPM chelates of Eu³⁺, by reaction (6), and the loss of intracomplex chemiexcitation is not compensated by a >10-fold increase of ϕ of Eu³⁺ by water (Table 1). Water changes the chemiluminescence spectrum of Eu(FOD)₃, by decreasing contribution of ${}^{5}D_{1}$ -emission (Fig. 4). Actually, in the presence of water, the triplet-triplet excitation of Eu(FOD)₃ (Eq. (4)) becomes important, and it does not lead to efficient ${}^{5}D_{1}$ -chemiluminescence of Eu³⁺ [28]. Similar changes of Eu(FOD)₃ CL spectrum are observed by addition of other competing complex forming agents that expel AAD from inner coordination sphere of Ln^{3+} [28]. Water also quenches emission of Dy(DPM)₃ both by reaction (6) and by additionally decreasing its ϕ (Table 1). Coordination-saturated BTFA, TTA and AA chelates:

For coordination-saturated chelates of Ln^{3+} the intermolecular and intracomplex chemiexcitations may give comparable contribution to ϕ_{CL} [25,26]. Water quenches chemiluminescence of Nd³⁺, Yb³⁺ and Dy³⁺ since it decreases their ϕ . Water also quenches emission of Tb³⁺, since the loss of intracomplex chemiexcitation is not compensated by ~1.5-fold enhancement of ϕ of Tb³⁺ by water.

However, water enhances chemiluminescence intensity of BTFA and TTA chelates of Eu³⁺ and Sm³⁺ (Fig. 6). The $\phi_{CL}(H_2O)/\phi_{CL}$ ratio is higher when concentrated chelate solutions are used while in diluted solutions water quenches chelate emission (Fig. 6). Both the ϕ_{CL} and ϕ for Eu³⁺ chelates are enhanced by water to a larger extent than for Sm³⁺.

Probably at high chelate concentrations in anhydrous solutions energy transfer from Ad=O* occurs both to the dimers and monomers of Ln(L)₃·*n*H₂O. In the presence of water only monomers act as energy acceptors, and since they have higher ϕ than dimers, it results in the net enhancement of Eu³⁺ and Sm³⁺ CL intensity. However intracomplex chemiexcitation of Eu³⁺ and Sm³⁺ in anhydrous solutions cannot be neglected since the ϕ_{CL} enhancement is ~2 times lower than the enhancement of ϕ (Table 1). If intracomplex route was negligible one would expect $\phi(H_2O)/\phi$ and $\phi_{CL}(H_2O)/\phi_{CL}$ values to be equal. The quenching by water of Sm³⁺ chemiluminescence at low chelate concentrations (Fig. 6) is due to the quenching of monomer luminescence [34].

4. Conclusions

Water enhances photoluminescence quantum yields of Eu³⁺, Tb³⁺ and Sm³⁺ β -diketonates in concentrated (>10⁻⁴ M) toluene solutions due to dissociation of weakly luinescent dimers, and by decreasing energy losses through

a LMCT state (for Eu³⁺). The influence of water on chemiluminescence of Ln³⁺ is dependent on its chemiexcitation mechanism. In the case of intracomplex chemiexcitation water always quenches CL intensity of Ln³⁺ independent of change of ϕ . In the case of intermolecular chemiexcitation, enhancement of ϕ by water may result in the enhancement of ϕ_{CL} , e.g. BTFA and TTA chelates of Eu³⁺ and Sm³⁺.

References

- G.F. De Sa, O.L. Malta, C. De M. Donega, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. Da Silva Jr., Coord. Chem. Rev. 196 (2000) 165.
- [2] S.B. Meshkova, Z.M. Topilova, D.V. Bolshoy, S.V. Beltyukova, M.P. Tsvirko, V.Y. Venchikov, Acta Phys. Polon. A 95 (1999) 983.
- [3] H.F. Brito, C.A.A. Carvalho, O.L. Malta, J.J. Passos, J.F.S. Menezes, R.D. Sinisterra, Spectrochim. Acta A 55 (1999) 2403.
- [4] M.H.V. Werts, M.A. Duin, J.W. Hofstraat, J.W. Verhoeven, Chem. Commun. (1999) 799.
- [5] L.S. Villata, E. Wolcan, M.R. Feliz, A.L. Capparelli, J. Phys. Chem. A 103 (1999) 5661.
- [6] W. Strek, J. Sokolnicki, J. Legendziewicz, K. Maruszewski, R. Reisfeld, T. Pavich, Opt. Mater. 13 (1999) 41.
- [7] H.H. Li, S. Inoue, K. Machida, G. Adachi, Chem. Mater. 11 (1999) 3171.
- [8] J.L. Yuan, K. Matsumoto, H. Kimura, Anal. Chem. 70 (1998) 596.
- [9] O.A. Serra, E.J. Nassar, C.A. Kodaira, C.R. Neri, P.S. Calefi, I.L.V. Rosa, Spectrochim. Acta A 54 (1998) 2077.
- [10] L.C. Thompson, F.W. Atchison, V.G. Young, J. Alloys Compounds 275-277 (1998) 765.
- [11] V.A. Belyakov, R.F. Vasilev, G.F. Fedorova, Russ. Chem. Bull. 45 (1996) 1596.
- [12] M.T. Berry, P.S. May, H. Xu, J. Phys. Chem. 100 (1996) 9216.
- [13] S.T. Frey, M.L. Gong, W. De W. Horrocks Jr., Inorg. Chem. 33 (1994) 3229.
- [14] G.D.R. Napier, J.D. Neilson, T.M. Shepherd, Chem. Phys. Lett. 31 (1975) 328.
- [15] C.J. Liang, Z.R. Hong, X.Y. Liu, D.X. Zhao, D. Zhao, W.L. Li, J.B. Peng, J.Q. Yu, C.S. Lee, S.T. Lee, Thin Solid Films 359 (2000) 14.

- [16] Y. Kawamura, Y. Wada, Y. Hasegawa, M. Iwamuro, T. Kitamura, S. Yanagida, Appl. Phys. Lett. 74 (1999) 3245.
- [17] X.C. Gao, H. Cao, C.H. Huang, B.G. Li, K. Ibrahim, F.Q. Liu, S. Umitani, Chem. Phys. Lett. 297 (1998) 530.
- [18] V.E. Karasev, A.V. Gerasimenko, A.G. Mirochnik, I.N. Botova, N.V. Polyakova, Koord. Khim. 25 (1999) 945.
- [19] A.B. Yusov, Radiokhimiya 35 (1993) 3.
- [20] X.F. Chen, S.H. Liu, C.Y. Duan, Y.H. Xu, X.Z. You, M. Jing, N.B. Min, Polyhedron 17 (1998) 1883.
- [21] N. Takada, J. Sugiyama, R. Katoh, N. Minami, S. Hieda, Synthetic Met. 91 (1997) 351.
- [22] L.M. Sweeting, A.L. Rheingold, J. Am. Chem. Soc. 109 (1987) 2652.
- [23] M.M. Richter, A.J. Bard, Anal. Chem. 68 (1996) 2641.
- [24] M. Elbanowski, B. Makowska, K. Staninski, M. Kaczmarek, J. Photochem. Photobiol. A 130 (2000) 75.
- [25] A.I. Voloshin, N.M. Shavaleev, V.P. Kazakov, J. Lumin. 91 (2000) 49.
- [26] A.I. Voloshin, N.M. Shavaleev, V.P. Kazakov, J. Photochem. Photobiol. A 131 (2000) 61.
- [27] V.P. Kazakov, A.I. Voloshin, N.M. Shavaleev, J. Photochem. Photobiol. A 119 (1998) 177.
- [28] G.L. Sharipov, A.I. Voloshin, V.P. Kazakov, G.A. Tolstikov, Dokl. Akad. Nauk SSSR 315 (1990) 425.
- [29] A. Beeby, I.M. Clarkson, R.S. Dickins, S. Faulkner, D. Parker, L. Royle, A.S. de Sousa, J.A.G. Williams, M. Woods, J.C.S. Perkin Trans. 2 (1999) 493.
- [30] V.L. Ermolaev, E.B. Sveshnikova, Russ. Chem. Rev. 63 (1994) 905.
- [31] S. Lis, G.R. Choppin, Anal. Chem. 63 (1991) 2542.
- [32] V.P. Kazakov, A.I. Voloshin, S.S. Ostakhov, N.M. Shavaleev, Mendeleev Commun. (1998) 47.
- [33] S.S. Ostakhov, A.I. Voloshin, V.P. Kazakov, N.M. Shavaleev, Russ. Chem. Bull. 47 (1998) 1466.
- [34] A.I. Voloshin, N.M. Shavaleev, V.P. Kazakov, J. Photochem. Photobiol. A 134 (2000) 111.
- [35] T. Ala-Kleme, K. Haapakka, M. Latva, Anal. Chim. Acta 395 (1999) 205.
- [36] G.B. Schuster, N.J. Turro, H.-C. Steinmetzer, A.P. Schaap, G. Faler, W. Adam, J.C. Liu, J. Am. Chem. Soc. 97 (1975) 7110.
- [37] Y. Haas, G. Stein, Chem. Phys. Lett. 8 (1971) 366.
- [38] B. Marciniak, G.L. Hug, J. Photochem. Photobiol. A 78 (1994) 7.